• Title/Summary/Keyword: 데이타베이스 응용

Search Result 303, Processing Time 0.027 seconds

Efficient Path Finding Based on the $A^*$ algorithm for Processing k-Nearest Neighbor Queries in Road Network Databases (도로 네트워크에서 $A^*$ 알고리즘을 이용한 k-최근접 이웃 객체에 대한 효과적인 경로 탐색 방법)

  • Shin, Sung-Hyun;Lee, Sang-Chul;Kim, Sang-Wook;Lee, Jung-Hoon;Im, Eul-Kyu
    • Journal of KIISE:Databases
    • /
    • v.36 no.5
    • /
    • pp.405-410
    • /
    • 2009
  • This paper proposes an efficient path finding scheme capable of searching the paths to k static objects from a given query point, aiming at both improving the legacy k-nearest neighbor search and making it easily applicable to the road network environment. To the end of improving the speed of finding one-to-many paths, the modified A* obviates the duplicated part of node scans involved in the multiple executions of a one-to-one path finding algorithm. Additionally, the cost to the each object found in this step makes it possible to finalize the k objects according to the network distance from the candidate set as well as to order them by the path cost. Experiment results show that the proposed scheme has the accuracy of around 100% and improves the search speed by $1.3{\sim}3.0$ times of k-nearest neighbor searches, compared with INE, post-Dijkstra, and $na{\ddot{i}}ve$ method.

Content-Based Image Retrieval using RBF Neural Network (RBF 신경망을 이용한 내용 기반 영상 검색)

  • Lee, Hyoung-K;Yoo, Suk-I
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.145-155
    • /
    • 2002
  • In content-based image retrieval (CBIR), most conventional approaches assume a linear relationship between different features and require users themselves to assign the appropriate weights to each feature. However, the linear relationship assumed between the features is too restricted to accurately represent high-level concepts and the intricacies of human perception. In this paper, a neural network-based image retrieval (NNIR) model is proposed. It has been developed based on a human-computer interaction approach to CBIR using a radial basis function network (RBFN). By using the RBFN, this approach determines the nonlinear relationship between features and it allows the user to select an initial query image and search incrementally the target images via relevance feedback so that more accurate similarity comparison between images can be supported. The experiment was performed to calculate the level of recall and precision based on a database that contains 1,015 images and consists of 145 classes. The experimental results showed that the recall and level of the proposed approach were 93.45% and 80.61% respectively, which is superior than precision the existing approaches such as the linearly combining approach, the rank-based method, and the backpropagation algorithm-based method.

Geometrical Feature-Based Detection of Pure Facial Regions (기하학적 특징에 기반한 순수 얼굴영역 검출기법)

  • 이대호;박영태
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.7_8
    • /
    • pp.773-779
    • /
    • 2003
  • Locating exact position of facial components is a key preprocessing for realizing highly accurate and reliable face recognition schemes. In this paper, we propose a simple but powerful method for detecting isolated facial components such as eyebrows, eyes, and a mouth, which are horizontally oriented and have relatively dark gray levels. The method is based on the shape-resolving locally optimum thresholding that may guarantee isolated detection of each component. We show that pure facial regions can be determined by grouping facial features satisfying simple geometric constraints on unique facial structure. In the test for over 1000 images in the AR -face database, pure facial regions were detected correctly for each face image without wearing glasses. Very few errors occurred in the face images wearing glasses with a thick frame because of the occluded eyebrow -pairs. The proposed scheme may be best suited for the later stage of classification using either the mappings or a template matching, because of its capability of handling rotational and translational variations.

A Point-Of-Interest Allomorph Database Construction System (POI 이형태 데이타베이스 구축 시스템)

  • Yang, Seung-Weon;Lee, Hyun-Young;Wang, Ji-Hyun
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.3
    • /
    • pp.226-235
    • /
    • 2009
  • People use various information for searching POI in the navigation system such as name, category, address, phone number. Most of users use name and category to search their POT. They don't know exact name in POI DB provided by Maker. They use abbreviated or generalized name as key word for searching POI. Because of these reasons, the hit ratio has been very low. In this paper, We suggest a extra DB_construction system for raising the hit ratio. It generates allomorphes DB link to the POI name in original DB. We classified the POI names in original DB into seven types of allomorph by analyzing the gathered patterns from the POI DB which has over 650,000 entries. For auto_generating the allomorphes, we made 577 rules based on the classified types. And we generated the allomorphes manually for the entries which are difficult to make the rule and has low frequency The generated allomorphes account for 35.8% of all original DB. The hit ratio is 89% under suggested system.

A Robust Fingerprint Classification using SVMs with Adaptive Features (지지벡터기계와 적응적 특징을 이용한 강인한 지문분류)

  • Min, Jun-Ki;Cho, Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.1
    • /
    • pp.41-49
    • /
    • 2008
  • Fingerprint classification is useful to reduce the matching time of a huge fingerprint identification system by categorizing fingerprints into predefined classes according to their global features. Although global features are distributed diversly because of the uniqueness of a fingerprint, previous fingerprint classification methods extract global features non-adaptively from the fixed region for every fingerprint. We propose an novel method that extracts features adaptively for each fingerprint in order to classify various fingerprints effectively. It extracts ridge directional values as feature vectors from the region after searching the feature region by calculating variations of ridge directions, and classifies them using support vector machines. Experimental results with NIST4 database show that we have achieved a classification accuracy of 90.3% for the five-class problem and 93.7% for the four-class problem, and proved the validity of the proposed adaptive method by comparison with non-adaptively extracted feature vectors.

Design and Implementation of Ubiquitous Parking Management System using Sensor Network (센서 네트워크를 이용한 유비쿼터스 주차관리 시스템의 설계 및 구현)

  • Byun, Chang-Hee;Lee, Je-Hye;Joe, Hyun-Woo;Kim, Hyung-Shin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.13 no.6
    • /
    • pp.388-396
    • /
    • 2007
  • In this paper, a ubiquitous parking management system(UPMS) using sensor network is proposed. Ubiquitous parking management system provides information on free space in the parking lot through PDA or cellular phone connected to wireless LAN. For the implementation of UPMS, we have developed sensor node, sensor application and web server application. The proposed system periodically updates parking space data and monitors in real-time according to the user's request from the personal internet device. Collected parking data are stored onto the database for further analysis. The implemented UPMS system was installed on campus parking lot using 10 sensor nodes and we successfully demonstrated its feasibility by accessing the web server from out of the campus.

Adaptive Skin Segmentation based on Region Histogram of Color Quantization Map (칼라 양자화 맵의 영역 히스토그램에 기반한 조명 적응적 피부색 영역 분할)

  • Cho, Seong-Sik;Bae, Jung-Tae;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.1
    • /
    • pp.54-61
    • /
    • 2009
  • This paper proposes a skin segmentation method based on region histograms of the color quantization map. First, we make a quantization map of the image using the JSEG algorithm and detect the skin pixel. For the skin region detection, the similar neighboring regions are set by its similarity of the size and location between the previous frame and the present frame from the each region of the color quantization map. Then we compare the similarity of histogram between the color distributions of each quantized region and the skin color model using the histogram distance. We select the skin region by the threshold value calculated automatically. The skin model is updated by the skin color information from the selected result. The proposed algorithm was compared with previous algorithms on the ECHO database and the continuous images captured under time varying illumination for adaptation test. Our approach shows better performance than previous approaches on skin color segmentation and adaptation to varying illumination.

SIFT based Image Similarity Search using an Edge Image Pyramid and an Interesting Region Detection (윤곽선 이미지 피라미드와 관심영역 검출을 이용한 SIFT 기반 이미지 유사성 검색)

  • Yu, Seung-Hoon;Kim, Deok-Hwan;Lee, Seok-Lyong;Chung, Chin-Wan;Kim, Sang-Hee
    • Journal of KIISE:Databases
    • /
    • v.35 no.4
    • /
    • pp.345-355
    • /
    • 2008
  • SIFT is popularly used in computer vision application such as object recognition, motion tracking, and 3D reconstruction among various shape descriptors. However, it is not easy to apply SIFT into the image similarity search as it is since it uses many high dimensional keypoint vectors. In this paper, we present a SIFT based image similarity search method using an edge image pyramid and an interesting region detection. The proposed method extracts keypoints, which is invariant to contrast, scale, and rotation of image, by using the edge image pyramid and removes many unnecessary keypoints from the image by using the hough transform. The proposed hough transform can detect objects of ellipse type so that it can be used to find interesting regions. Experimental results demonstrate that the retrieval performance of the proposed method is about 20% better than that of traditional SIFT in average recall.

Iris Recognition using Gabor Wavelet and Fuzzy LDA Method (가버 웨이블릿과 퍼지 선형 판별분석 기법을 이용한 홍채 인식)

  • Go Hyoun-Joo;Kwon Mann-Jun;Chun Myung-Geun
    • Journal of KIISE:Software and Applications
    • /
    • v.32 no.11
    • /
    • pp.1147-1155
    • /
    • 2005
  • This paper deals with Iris recognition as one of biometric techniques which is applied to identify a person using his/her behavior or congenital characteristics. The Iris of a human eye has a texture that is unique and time invariant for each individual. First, we obtain the feature vector from the 2D Iris pattern having a property of size invariant and using the fuzzy LDA which is further through four types of 2D Gabor wavelet. At the recognition process, we compute the similarity measure based on the correlation values. Here, since we use four different matching values obtained from four different directional Gabor wavelet and select the maximum value, it is possible to minimize the recognition error rate. To show the usefulness of the proposed algorithm, we applied it to a biometric database consisting of 300 Iris Patterns extracted from 50 subjects and finally got more higher than $90\%$ recognition rate.

A Location Prediction System for Moving Objects in Battlefield Analysis (전장분석을 위한 이동 객체의 위치 예측 시스템)

  • 안윤애;류근호;조동래
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.6
    • /
    • pp.765-777
    • /
    • 2002
  • For the battlefield analysis, it is required to get correct information about the identification and moving status of target enemy units. However, it is difficult for us to collect all of the information perfectly, because of the technology of communications, jamming, and tactics. Therefore, we need a reasoning function that predicts and analyzes future moving status for target units by using collected moving information and domain knowledge. Especially. since the moving units have characteristics of moving objects, which change their position and shape over time, they require functions to manage and predict locations of moving objects. Therefore, in this paper, we propose a location prediction system of moving units for battlefield analysis. The proposed system not only predicts unknown units, unidentified units, and main strike directions to application domain for battlefield analysis, but also estimates the past or future locations of moving objects not stored in a database.