• Title/Summary/Keyword: 데이타마이닝 시스템

Search Result 39, Processing Time 0.024 seconds

A Tensor Space Model based Deep Neural Network for Automated Text Classification (자동문서분류를 위한 텐서공간모델 기반 심층 신경망)

  • Lim, Pu-reum;Kim, Han-joon
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.3-13
    • /
    • 2018
  • Text classification is one of the text mining technologies that classifies a given textual document into its appropriate categories and is used in various fields such as spam email detection, news classification, question answering, emotional analysis, and chat bot. In general, the text classification system utilizes machine learning algorithms, and among a number of algorithms, naïve Bayes and support vector machine, which are suitable for text data, are known to have reasonable performance. Recently, with the development of deep learning technology, several researches on applying deep neural networks such as recurrent neural networks (RNN) and convolutional neural networks (CNN) have been introduced to improve the performance of text classification system. However, the current text classification techniques have not yet reached the perfect level of text classification. This paper focuses on the fact that the text data is expressed as a vector only with the word dimensions, which impairs the semantic information inherent in the text, and proposes a neural network architecture based upon the semantic tensor space model.

A Dynamic Recommendation System Using User Log Analysis and Document Similarity in Clusters (사용자 로그 분석과 클러스터 내의 문서 유사도를 이용한 동적 추천 시스템)

  • 김진수;김태용;최준혁;임기욱;이정현
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.5
    • /
    • pp.586-594
    • /
    • 2004
  • Because web documents become creation and disappearance rapidly, users require the recommend system that offers users to browse the web document conveniently and correctly. One largely untapped source of knowledge about large data collections is contained in the cumulative experiences of individuals finding useful information in the collection. Recommendation systems attempt to extract such useful information by capturing and mining one or more measures of the usefulness of the data. The existing Information Filtering system has the shortcoming that it must have user's profile. And Collaborative Filtering system has the shortcoming that users have to rate each web document first and in high-quantity, low-quality environments, users may cover only a tiny percentage of documents available. And dynamic recommendation system using the user browsing pattern also provides users with unrelated web documents. This paper classifies these web documents using the similarity between the web documents under the web document type and extracts the user browsing sequential pattern DB using the users' session information based on the web server log file. When user approaches the web document, the proposed Dynamic recommendation system recommends Top N-associated web documents set that has high similarity between current web document and other web documents and recommends set that has sequential specificity using the extracted informations and users' session information.

A Management Improvement Study by the Use Survey of an Academic Library - Focused on the Analysis of Circulation Records of the C-Academic Library Users - (대학도서관 이용조사를 통한 경영개선 연구 - C 대학도서관 이용자의 대출기록 분석을 중심으로-)

  • Yoo, Kyeong-Jong;Park, Il-Jong
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.3
    • /
    • pp.93-117
    • /
    • 2007
  • The books and circulation-related data in the Library Automation System(LAS) of C-academic library were collected and analyzed, and also the method which may be applied to the Customer Relationship Management (CRM) based on the results was suggested in this paper. Collected data were 269,387 bibliographic data of books, 12,281 patron data, and 39,269 circulation records. User identity, circulation frequencies, total number of circulated books, and publication year as relation factor from the analyzed data of circulation records were extracted. They were also analyzed, and verified by correlation coefficient.

OLAP System and Performance Evaluation for Analyzing Web Log Data (웹 로그 분석을 위한 OLAP 시스템 및 성능 평가)

  • 김지현;용환승
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.909-920
    • /
    • 2003
  • Nowadays, IT for CRM has been growing and developed rapidly. Typical techniques are statistical analysis tools, on-line multidimensional analytical processing (OLAP) tools, and data mining algorithms (such neural networks, decision trees, and association rules). Among customer data, web log data is very important and to use these data efficiently, applying OLAP technology to analyze multi-dimensionally. To make OLAP cube, we have to precalculate multidimensional summary results in order to get fast response. But as the number of dimensions and sparse cells increases, data explosion occurs seriously and the performance of OLAP decreases. In this paper, we presented why the web log data sparsity occurs and then what kinds of sparsity patterns generate in the two and t.he three dimensions for OLAP. Based on this research, we set up the multidimensional data models and query models for benchmark with each sparsity patterns. Finally, we evaluated the performance of three OLAP systems (MS SQL 2000 Analysis Service, Oracle Express and C-MOLAP).

  • PDF

VRIFA: A Prediction and Nonlinear SVM Visualization Tool using LRBF kernel and Nomogram (VRIFA: LRBF 커널과 Nomogram을 이용한 예측 및 비선형 SVM 시각화도구)

  • Kim, Sung-Chul;Yu, Hwan-Jo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.722-729
    • /
    • 2010
  • Prediction problems are widely used in medical domains. For example, computer aided diagnosis or prognosis is a key component in a CDSS (Clinical Decision Support System). SVMs with nonlinear kernels like RBF kernels, have shown superior accuracy in prediction problems. However, they are not preferred by physicians for medical prediction problems because nonlinear SVMs are difficult to visualize, thus it is hard to provide intuitive interpretation of prediction results to physicians. Nomogram was proposed to visualize SVM classification models. However, it cannot visualize nonlinear SVM models. Localized Radial Basis Function (LRBF) was proposed which shows comparable accuracy as the RBF kernel while the LRBF kernel is easier to interpret since it can be linearly decomposed. This paper presents a new tool named VRIFA, which integrates the nomogram and LRBF kernel to provide users with an interactive visualization of nonlinear SVM models, VRIFA visualizes the internal structure of nonlinear SVM models showing the effect of each feature, the magnitude of the effect, and the change at the prediction output. VRIFA also performs nomogram-based feature selection while training a model in order to remove noise or redundant features and improve the prediction accuracy. The area under the ROC curve (AUC) can be used to evaluate the prediction result when the data set is highly imbalanced. The tool can be used by biomedical researchers for computer-aided diagnosis and risk factor analysis for diseases.

A Korean Product Review Analysis System Using a Semi-Automatically Constructed Semantic Dictionary (반자동으로 구축된 의미 사전을 이용한 한국어 상품평 분석 시스템)

  • Myung, Jae-Seok;Lee, Dong-Joo;Lee, Sang-Goo
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.6
    • /
    • pp.392-403
    • /
    • 2008
  • User reviews are valuable information that can be used for various purposes. In particular, the product reviews on online shopping sites are important information which can directly affect the purchasing decision of the customers. In this paper, we present our design and implementation of a system for summarizing the customer's opinion and the features of each product by analyzing reviews on a commercial shopping site. During the analysis process, several natural language processing(NLP) techniques and the semantic dictionary were used. The semantic dictionary contains vocabularies that are used to express product features and customer's opinions. And it was constructed in semi-automatic way with the help of the tool we implemented. Furthermore, we discuss how to handle the vocabularies that have different meanings according to the context. We analyzed 1796 reviews about 20 products of 2 categories collected from an actual shopping site and implemented a novel ranking system. We obtained 88.94% for precision and 47.92% for recall on extracting opinion expression, which means our system can be applicable for real use.

Index-based Searching on Timestamped Event Sequences (타임스탬프를 갖는 이벤트 시퀀스의 인덱스 기반 검색)

  • 박상현;원정임;윤지희;김상욱
    • Journal of KIISE:Databases
    • /
    • v.31 no.5
    • /
    • pp.468-478
    • /
    • 2004
  • It is essential in various application areas of data mining and bioinformatics to effectively retrieve the occurrences of interesting patterns from sequence databases. For example, let's consider a network event management system that records the types and timestamp values of events occurred in a specific network component(ex. router). The typical query to find out the temporal casual relationships among the network events is as fellows: 'Find all occurrences of CiscoDCDLinkUp that are fellowed by MLMStatusUP that are subsequently followed by TCPConnectionClose, under the constraint that the interval between the first two events is not larger than 20 seconds, and the interval between the first and third events is not larger than 40 secondsTCPConnectionClose. This paper proposes an indexing method that enables to efficiently answer such a query. Unlike the previous methods that rely on inefficient sequential scan methods or data structures not easily supported by DBMSs, the proposed method uses a multi-dimensional spatial index, which is proven to be efficient both in storage and search, to find the answers quickly without false dismissals. Given a sliding window W, the input to a multi-dimensional spatial index is a n-dimensional vector whose i-th element is the interval between the first event of W and the first occurrence of the event type Ei in W. Here, n is the number of event types that can be occurred in the system of interest. The problem of‘dimensionality curse’may happen when n is large. Therefore, we use the dimension selection or event type grouping to avoid this problem. The experimental results reveal that our proposed technique can be a few orders of magnitude faster than the sequential scan and ISO-Depth index methods.hods.

Reliability Analysis of VOC Data for Opinion Mining (오피니언 마이닝을 위한 VOC 데이타의 신뢰성 분석)

  • Kim, Dongwon;Yu, Song Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.217-245
    • /
    • 2016
  • The purpose of this study is to verify how 7 sentiment domains extracted through sentiment analysis from social media have an influence on business performance. It consists of three phases. In phase I, we constructed the sentiment lexicon after crawling 45,447 pieces of VOC (Voice of the Customer) on 26 auto companies from the car community and extracting the POS information and built a seven-sensitive domains. In phase II, in order to retain the reliability of experimental data, we examined auto-correlation analysis and PCA. In phase III, we investigated how 7 domains impact on the market share of three major (GM, FCA, and VOLKSWAGEN) auto companies by using linear regression analysis. The findings from the auto-correlation analysis proved auto-correlation and the sequence of the sentiments, and the results from PCA reported the 7 sentiments connected with positivity, negativity and neutrality. As a result of linear regression analysis on model 1, we indentified that the sentimental factors have a significant influence on the actual market share. In particular, not only posotive and negative sentiment domains, but neutral sentiment had significantly impacted on auto market share. As we apply the availability of data to the market, and take advantage of auto-correlation of the market-related information and the sentiment, the findings will be a huge contribution to other researches on sentiment analysis as well as actual business performances in various ways.

The Prediction of Currency Crises through Artificial Neural Network (인공신경망을 이용한 경제 위기 예측)

  • Lee, Hyoung Yong;Park, Jung Min
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.4
    • /
    • pp.19-43
    • /
    • 2016
  • This study examines the causes of the Asian exchange rate crisis and compares it to the European Monetary System crisis. In 1997, emerging countries in Asia experienced financial crises. Previously in 1992, currencies in the European Monetary System had undergone the same experience. This was followed by Mexico in 1994. The objective of this paper lies in the generation of useful insights from these crises. This research presents a comparison of South Korea, United Kingdom and Mexico, and then compares three different models for prediction. Previous studies of economic crisis focused largely on the manual construction of causal models using linear techniques. However, the weakness of such models stems from the prevalence of nonlinear factors in reality. This paper uses a structural equation model to analyze the causes, followed by a neural network model to circumvent the linear model's weaknesses. The models are examined in the context of predicting exchange rates In this paper, data were quarterly ones, and Consumer Price Index, Gross Domestic Product, Interest Rate, Stock Index, Current Account, Foreign Reserves were independent variables for the prediction. However, time periods of each country's data are different. Lisrel is an emerging method and as such requires a fresh approach to financial crisis prediction model design, along with the flexibility to accommodate unexpected change. This paper indicates the neural network model has the greater prediction performance in Korea, Mexico, and United Kingdom. However, in Korea, the multiple regression shows the better performance. In Mexico, the multiple regression is almost indifferent to the Lisrel. Although Lisrel doesn't show the significant performance, the refined model is expected to show the better result. The structural model in this paper should contain the psychological factor and other invisible areas in the future work. The reason of the low hit ratio is that the alternative model in this paper uses only the financial market data. Thus, we cannot consider the other important part. Korea's hit ratio is lower than that of United Kingdom. So, there must be the other construct that affects the financial market. So does Mexico. However, the United Kingdom's financial market is more influenced and explained by the financial factors than Korea and Mexico.