• Title/Summary/Keyword: 대형화재

Search Result 421, Processing Time 0.02 seconds

A Suggestions for Building Regulation through the Analysis of Problems among the Building Evacuation Laws (건축물 피난규정간 문제점 분석을 통한 법령 개선방향 설정에 관한 연구)

  • Hwang, Eun-Kyoung;Kim, Dae-Hee;Cho, Jeong-Hoon;Hwang, Keum-Sook
    • Fire Science and Engineering
    • /
    • v.21 no.4
    • /
    • pp.105-114
    • /
    • 2007
  • Recently the consideration for occupants' security has been raised as very important design element from the fire by building's large sized, higher storied, and its compounded. But the domestic Laws regulated the predicative laws according to the technical standard which has no difference from the past domestic evacuation regulations. Therefore when big fire occurs, it is not enough to guarantee for occupants to escape safely. Specially since domestic escape relevant laws are divided into Architect relevant law and fire fighting relevant law, it has caused to bring various problems. So This study will show the problems of the evacuation regulation which is registrated in the Architect relevant law and fire fighting relevant law. And also later, when Architect escape relevant laws re-registrate, this study will be used as foundational materials.

GIS-based Fire Evacuation Simulation using CA Model (CA 모델을 이용한 GIS 기반 화재 대피 시뮬레이션)

  • Park, In-Hye;Jun, Chul-Min;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.16 no.2
    • /
    • pp.157-171
    • /
    • 2008
  • With emerging technologies on wireless networks and mobile computing environment, a number of researches have been carried out for ubiquitous computing. An important functional requirement of ubiquitous computing is to handle location data with ease. With the increase of accidents in large complex buildings. move attention is being paid to indoor spaces and evacuation. However, most currently used evacuation-related applications are simulation based on hypothetical data. Also, since they use non-georeferenced CAD data, it is not easy to integrate them with indoor positioning devices. With the recent progress of indoor positioning systems, the simulators can be enhanced to real-time evacuation systems. As a preliminary stage to make such systems possible, this study proposes using a georeferenced data and evacuation simulation. This study used GIS data and Cellular Automata theory an the algorithm for the movement of the evacuee.

  • PDF

Numerical Study on Air Egress Velocity in Vestibule Pressurization System : Characteristics of Air Flow in the Vestibule with Multiple Fire Doors in an Apartment Building (부속실 가압 시스템의 방연풍속에 관한 수치해석적 연구: 공동주택 부속실내에 다수 출입문의 존재시 기류특성)

  • Seo, Chanwon;Shin, Weon Gyu
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.30-36
    • /
    • 2014
  • The pressurized smoke control system in the vestibule is important for fire safety in buildings because it is concerned with egress time of people and the safety of fire fighters. The vestibule pressurization system can prevent smoke from entering the vestibule using differential pressure when fire doors are closed and using the egress velocity when fire doors are open. Air supplying units in the vestibule need to be arranged by taking account of the location of doors and the volume of the vestibule in order to assure the uniform air egress velocity through a fire door when it is open. In this study, computational fluid dynamics (CFD) simulations were conducted for the vestibule where multiple doors are installed and it was found that the reverse flow occurs when the damper position in vestibule is not appropriate.

The Study on the Comparison of Building Use Classification between Building Act and Installation.Maintenance & Safety Management of Fire-Fighting System Act (건축법과 소방시설 설치유지 및 안전관리에 관한 법령간 건축물 용도분류체계 비교 연구)

  • Hwang, Eun-Kyoung
    • Fire Science and Engineering
    • /
    • v.23 no.4
    • /
    • pp.112-119
    • /
    • 2009
  • Building use classification is classified the building types according to the similar structure, the goal of the use, and its shape. The important reason of building use classification is that building restrictions are applied according to building use classifications. But there are a lot of confusion because the building use classification is regulated not only by the Building Act but also by the several individual Act. Particularly in the large-scaled, high-raised and complex building construction, it is very important to remain the consistency of the building use classification between the Building Act and the Fire-Fighting System Act for safety of occupants. So the purpose of this study is to suggests the improve direction of the building use classifications through the comparative analysis of the Building Act and the Fire-Fighting System Act.

A Study on the Improvement Direction of the Building Escape Regulation Considering Inconvenient Movers (이동약자를 고려한 건축물 피난규정 개선 방안에 관한 연구)

  • Hwang, Eun-Kyoung
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.32-38
    • /
    • 2009
  • Owing to increase of the large-scaled, high-raised and complexed building construction, the escape design of the building became very important issue to insure the safety of occupant. Specially, it is demanded to have building escape regulation considering for inconvenient movers such as disables elders pregnant women. However, building regulations for inconvenient movers are divided into "Regulation of Escape and Fire-prevention of Building" and "Act on the Promotion and Guarantee of Access for the Disabled, the Aged and Pregnant Women to Facilities and Information". But, for the escape security of inconvenient movers, the connection of each regulation are necessary. So this study suggested the improvement direction of the building escape regulation considering inconvenient movers through the compared analysis on the "Regulation of Escape and Fire-prevention of Building" and "Act on the Promotion and Guarantee of Access for the Disabled, the Aged and Pregnant Women to Facilities and Information".

A Study on Improvement of Evacuation Safety Evaluation for Performance Based Design in Underground Parking Lot (지하주차장 성능위주설계의 피난안전성 평가 개선에 관한 연구)

  • Song, Young-Joo;Kong, II-Chean;Kim, Hak-Jung
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.85-97
    • /
    • 2019
  • Today, building constructions are becoming larger, higher, deeper, and complex to improve quality of human life and meet various needs. As a result, new design space for non - typically standardized space has been created, and targets for performance-based design are also becoming increased. An evacuation safety evaluation of performance-based design should be compared with ASET and RSET estimation so that the value of RSET does not exceed the value of ASET. However, there is a problem that it is difficult to secure the safety with using the performance-based design evaluation method currently in use, especially in case of the underground parking lot, because it has wide compartment area and various routes for evacuation. Therefore, in order to overcome these problems, this paper first investigates the simulation setting method of the performance-based design that is currently in use, and then conducts two fire simulations and three evacuation simulations for underground parking lots each time, so performs the evacuation safety evaluationin total six cases of situations. Here this paper analyzes the problem with comparative evaluation research and suggests the better solution for improved evacuation safety evaluation of performance-based design.

Carbonation Assessment of High-Strength Concrete Using Polypropylene Fiber after Fire Damage (폴리프로필렌 섬유를 혼입한 고강도 콘크리트의 화재피해 후 중성화 평가)

  • Byun, Yong-Hyun;Ryu, Dong-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.235-243
    • /
    • 2020
  • In recent years, the use of high-strength concrete has increased with increasing height and enlarging scale of the buildings However, it has been pointed out that the use of high-strength concrete is the most serious problem compared to ordinary concrete in terms of the spalling of concrete cross sections caused by fires. For this reason, fiber cocktail methods, which are made of polypropylene fibers, nylon fibers, etc., are mainly used to improve the fire resistance performance. However, the majority of research on high-strength concrete to which the fiber cocktail method was applied is mainly focused on the effect of reducing spalling, and few studies have investigated and analyzed the effect of micropores produced by melting PP fibers on the long-term durability of high-strength concrete after a fire. Therefore, in this study, the effect of micropores on the depth of carbonation was examined through carbonation tests and microstructure analysis, assuming high-strength concrete to which fiber-mixed construction method was applied, which caused fire damage.

Resistance of Chloride Penetration into High Strength Concrete Containing Mineral Admixtures according to Curing Conditions (광물질혼화재 혼합 고강도콘크리트의 양생조건에 따른 염화물이온 침투저항성)

  • Moon, Han-Young;Kim, Byoung-Kwon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.2
    • /
    • pp.185-194
    • /
    • 2004
  • In recent years, construction company makes inroads into the world construction market, and receives the order of extra-large concrete structure under marine environment in south-east asia specially. At this point of time, to enhance the quality of concrete, we research the High Strength Concrete (HSC) containing mineral admixtures. In this study, therefore, HSC with various combination of ordinary portland cement(OPC), blast-furnace slag(SG), silica fume(SF), and expansion admixture(SS) are cured 23 and $35^{\circ}C$ considering the site weather, and are cured in water for 3, 7 or 56 days respectively. Test results show that the HSC cured at $35^{\circ}C$ gains higher early-age strength but eventually gains lower later-age strength compare with the HSC cured at $23^{\circ}C$. Especially, HSC with combination of OPC+SG+SF+SS or OPC+SG+SF show very excellent resistance of chloride penetration. The permeability of HSC was therefore enhanced as because of containing the proper content of SG, SF, and SS and making dense micro-structure of HSC.

Case Study on the detailed standard setting and Application for QRA in Honam high speed railway tunnel (호남고속철도터널의 정량적 위험도 분석(QRA)을 위한 세부기준수립 및 적용사례)

  • Kim, Seon-Hong;Moon, Yeon-Oh;Seok, Jin-Ho;Kim, Ki-Lim;Kim, Chan-Dong;Yoo, Ho-Sik
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.10a
    • /
    • pp.249-260
    • /
    • 2008
  • Although the accident rate is lower than the road tunnel, fire in railway tunnel can bring large damage of human life. In the high speed railway tunnel, the possibility of the railway-disaster (fire) is growing in consideration of the speedy railway and the tunnel length. For that reason, MLTM (Ministry of Land, Transport and Maritime Affairs) published "Rules about the Safety Standard of Railroad (2005.10.27)" and "The Detailed Safety Standard of Railroad (2006.9.22)". According to those, QRA(Quantitative Risk Analysis) technique is recommended to be applied to railway tunnel design which is longer than 1km for assuring the safety function and estimating the risk. However, it is difficult to perform the disaster prevention design due to lack of the detailed standards about event scenario, fire intensity, incidence rate of accidents etc. Therefore, This paper introduces the case of tunnel design for disaster prevention of the Honam high speed railway including the detailed standards of QRA and reasonable safety facilities.

  • PDF

Effect of Re-ventilated Fan Capacity on Road Tunnel Fire (제트팬 용량이 도로터널 화재에 미치는 영향)

  • Kim, Kang-Hee;Cho, Mok-Lyang;Kim, Tae-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.204-210
    • /
    • 2019
  • In case of a fire inside a tunnel, unlike ordinary roads, it is very difficult for a driver to obtain visibility, and a large accident is highly likely to occur. In this study, the smoke behavior, visible distance, and CO concentration of a jet fan were analyzed using the NIST fire simulation (FDS). All analyses were set to HRRPUA (Heat Release Rate Per Area) 3.6MW/m and all the analysis times were set to 600s. In all analyses by CFD, the results were confirmed at y=30m and y=110m, and smoke behavior analysis, visible range analysis, and carbon monoxide concentration were confirmed according to the diameter and flow rate. As the size and flow rate of the jet fan increased, the visibility distance was high at y=30m, and the concentration of carbon monoxide was also confirmed to be 0 ppm. Therefore, proper setting of the jet fan diameter and flow rate will be an excellent solution for fires in tunnels, and taking refuge at upstream area of a re-ventilated fan can reduce the number of casualties.