• Title/Summary/Keyword: 대형직접전단시험

Search Result 51, Processing Time 0.099 seconds

Comparison of Shear Strength of Coarse Materials Measured in Large Direct Shear and Large Triaxial Shear Tests (대형 직접전단시험과 대형 삼축압축시험에 의한 조립재료의 전단강도 비교)

  • Seo, Minwoo;Kim, Bumjoo;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.1
    • /
    • pp.25-34
    • /
    • 2009
  • Since the particle sizes of the coarse materials used in dam or harbor constructions are much larger than those of typical soils, it is desirable that large shear testing apparatuses are used when performing shear tests on the coarse materials to obtain as accurate results as possible. Two large-scale shear testing apparatuses, large direct shear testing apparatus and large triaxial shear testing apparatus, are commonly used. Currently in Korea, however, there have not been many cases in which shear tests were done using the large apparatus due to mainly difficulties in manufacturing, diffusing, and operating them. In present study, both large direct shear tests and large triaxial shear tests were performed on the coarse materials, which are used as dam fill materials, for 6 test cases in which particle sizes, specimen sizes, vertical pressure (confining pressure) conditions were little different, and then, the shear strength characteristics of the materials were compared with the two different shear tests. The test results showed that, by the Mohr-Coulomb failure criterion, overall the shear strength obtained by the large direct shear tests was larger than that by the large triaxial shear tests. Moreover, the shear strength under the normal stress of 1,000 kPa was about 10 to 70% larger for the large direct shear tests than for the large triaxial shear tests, revealing the larger differences in the coarse materials, compared to typical soils.

  • PDF

An Experimental Study on the Evaluation of Shear Strength of Weathered Soil Containing Coarse Particles (굵은 입자가 포함된 풍화토의 전단강도 평가에 대한 실험연구)

  • Joon-Seok Kim
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.169-176
    • /
    • 2024
  • Purpose: In this paper, an experimental study was conducted to analyze the difference in shear strength caused by the problem of excluding coarse particles due to the size of the test specimen in the direct shear test. Method: A large-scale direct shear test was conducted on three weathered soils containing coarse aggregates with a maximum diameter of 50mm. In addition, a small-scale direct shear test was performed using a sample with a maximum diameter of 5 mm, excluding coarse aggregates. Result: In the case of the small-scale direct shear test, compared to the results of the large-scale direct shear test containing large particles, the internal friction angle was about 2.3% smaller, and there was no significant difference. In terms of cohesion, compared to the large-scale direct shear test, the small-scale direct shear test derived about 80.3% smaller value, showing a relatively large difference. Conclusion: In the large-scale direct shear test, it was analyzed that the coarse particles had a greater impact on the cohesion than the internal friction angle. Therefore, granite weathered clay containing coarse particles is judged to have the same shear strength as the cohesive force that is not affected by vertical stress. In this study, it was analyzed that the small-scale direct shear test, which excludes the coarse particles that are commonly used, provides results on the safety side by excluding the effect of coarse particles.

Comparison of Shear Behavior for Quarry Blasted Rocks Based on Large Scale Direct Shear Test and Large Scale Triaxial Test (대형직접전단시험과 대형삼축시험을 통한 석산골재의 전단거동 특성 비교)

  • Lee, Dae-Soo;Kim, Kyoung-Yul;Oh, Gi-Dae
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.2
    • /
    • pp.5-14
    • /
    • 2008
  • Shear characteristics of quarry blasted rocks were compared using large scale direct shear tests and triaxial tests. For comparison purpose, similar test conditions were simulated as much as possible and three types of relative density (50%, 70%, 90%) were employed for the test. Results indicate that stress-strain behavior shows the same trend for two tests, but the measured shear strengths differ for the different test ms and depends on the relative density. At low relative density, the internal friction angles from direct shear test are smaller than those from triaxial tests. However, at high relative density, this phenomenon is reversed.

Scale Effects of the Specimen on Shear Strength of sand by Direct Shear Test (직접전단시험에 의한 모래의 전단강도에서 시편의 크기효과)

  • Kim, Joon-Seok;Kim, Ji-Hyun
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.4
    • /
    • pp.590-596
    • /
    • 2019
  • Purpose: An experimental study was conducted on the sand samples for the size effect of the test specimens, one of the problems of the direct shear test. Method: Jumunjin standard sand, a representative sand of Korea, was used as sand sample. The large direct shear test was performed to analyze the shear strength at 50%, 60%, 70%, and 80% relative density, and then the comparative results were compared with the test results of the small direct shear test. Result: It was analyzed that the internal friction angle of the small shear tester tended to be relatively large in the dense region. It was analyzed that the results of the large shear tester tend to be relatively large in the region of medium relative density. Conclusion: The size effect on the samples in the direct shear test on sandy soil was analyzed to be relatively small.

A Study on the Interface Shear Strength of HDPE Textured Geomembrane (HDPE 표면처리 지오멤브레인의 경계면 전단강도에 관한 연구)

  • Kim, Sejin;Youn, Heejung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.2
    • /
    • pp.41-49
    • /
    • 2016
  • This paper evaluates the interface shear strength of HDPE textured geomembrane. The interface shear strength between textured geomembrane and marl, and textured geomembrane and woven geotextile were measured; and the smooth geomembrane was used to evaluate the effect of "texture" on the interface shear strength. The interface shear strength was measured using a large direct shear testing device under several conditions including the presence of water, and the normal stresses that were 12, 24, 45, 100, 500, and 1,000 kPa. From testing results, it was found that there was meaningful reduction in the interface shear strength in the presence of water, but the effect of normal stress was not clear. The interface shear strength was measured to be significantly different for smooth geomembrane, whose strength was measured to be as small as half that of the textured geomembrane.

Characteristic of Shear Behavior of Coarse Grained Materials Based on Large Scale Direct Shear Test (II) (대형직접전단시험을 이용한 조립재료의 전단거동 특성 (II))

  • Lee Dae-Soo;Kim Kyoung-Yul;Hong Sung-Yun;Hwang Sung-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.4
    • /
    • pp.51-59
    • /
    • 2006
  • In this paper, the effect of variation of density and uniformity coefficient on shear strength was analyzed from the results of large scale shear test. In addition, the friction coefficient at critical state per vertical load was estimated using the equation proposed by Wood (1998). The test sample fur the test was obtained from the local quarry sites. Tests results show that the shear strength of $2.10g/cm^3$ is relatively larger than that of $1.85g/cm^3$ and uniformity coefficient (5.0) has larger shear strength than that in 10.0. In the meantime, the friction coefficient at critical state shows $1.0{\sim}1.6$ according to the test conditions.

Engineering Properties of Tire Treads for Soil Reinforcement (지반보강재로서 타이어 트레드의 공학적 특성)

  • Yoon, Yeowon;Cho, Sungsoo;Kim, Keunsoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.1
    • /
    • pp.49-55
    • /
    • 2007
  • In order to utilize treads of waste tire as reinforcement material it is necessary to know the interface friction angle between tread surfaces and soil and tensile strength of connection joint of tire treads. In this research large direct shear tests were performed to get the interface friction angle between the inner and outer surfaces of treads and soil for different degree of compaction. From the large direct shear tests, the ratio of interface friction angle to the shear friction angle of sand, ${\delta}/{\phi}$, were 1.06 in outside surface of tire tread and 0.93 in inside surface of tire tread. For weathered granite soil the ratio of interface friction angle was 0.98 and 0.92 for outside and inside of tread, respectively. Also tensile tests were performed using universal testing machine for the connection joint of treads and Tirecell units using bolts. The tensile strength of connection joint increased with the number of bolts and with the sizes of washers. Connection by polypropylene ropes showed lower strength than those of bolts.

  • PDF

Characteristics on Shear Strength and Clogging Phenomenon of Bottom Ash and Rammed Aggregate Mixture Compaction Pile (쇄석과 저회의 혼합다짐말뚝의 전단강도와 Clogging 현상 규명)

  • Lee, Dongyeup;Kang, Hyongnam;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.3
    • /
    • pp.33-41
    • /
    • 2010
  • The rammed aggregate compaction pile method is widely used as soft ground improvement method because of the installed piles improve not only overall composite capacity but also discharge capacity. But the discharge capacity is declined when the clogging is generated due to the clay penetration into voids of rammed aggregate compaction pile with the time elapsed. The purpose of this study is to reduce the clogging problem occurred in rammed aggregate compaction pile constructed in the soft ground and to minimize voids of rammed aggregate compaction pile. The proper mixing ratio was determined which is based on the results of the large scale direct shear tests conducted to get strength and permeability as optimum mixing ratio of crushed stone and bottom ash. The test results indicated that the highest internal friction angle was obtained at 80:20 mixing ratio of crushed stone and bottom ash. The internal friction angle was declined when the mixing ratio of the bottom ash increased over 20%. The results of the clogging tests, presented that the mixture of 80:20 crushed stone and bottom ash is highest effective of clogging than ratio of pure crushed stone.

Analysis of Shear Resistance Characteristics in Pile-Soil Interface using Large-Scale Direct Shear Test (대형직접전단시험을 통한 말뚝과 지반 경계면의 전단특성 분석)

  • You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.61-69
    • /
    • 2022
  • In this study, a large-scale direct shear test was performed to evaluate the shear characteristics of the pile-soil interface according to the fines content and confining pressure conditions as a reasonable evaluation method of the pullout resistance performance of pile considering the soil conditions. It was found that the shear stress was greatly generated under the conditions of high normal stress and low fines content. In addition, the maximum shear stress was found to be rather large under the conditions of the same normal stress and fines content, when pile surface had high roughness. The internal friction angle decreased at the pile-soil interface, when the fines content in the ground increased. On the other hand, the cohesion decreased under the condition of high fines content. And the internal friction angle and cohesion were large regardless of the fines content in the model ground, when the roughness of the pile surface was high.

Friction Characteristics on Interface Between Reinforcement and Sand by Direct Shear Test Methods (전단시험방법에 따른 토목섬유/모래 접촉면에서의 마찰특성)

  • Ju, Jae-Woo;Park, Jong-Beom;Chang, Yong-Chai
    • Journal of the Korean Geosynthetics Society
    • /
    • v.2 no.1
    • /
    • pp.39-45
    • /
    • 2003
  • The most important part in the earth reinforcement is the interface between soil and the reinforcement. Shear strength and shear behavior in this interface make a great role relating to the reinforcement effect. This paper presents 2 kinds of direct shear test methods. one is the strain free shear test, called 'free method', that is performed by the free condition of allowing tensile strain. The other is the strain fix shear test, called 'fixed method', that is performed by the fixed condition of not allowing tensile strain. Two reinforcements were used such as nonwoven geotextile and geogrid. That is, interfaces are composed of geogrid/sand and geotextile/sand. From the test results it shows us that the fixed method had a greater friction angle and a smaller peak shear strain than those of the free method. Residual stress of the fixed method was bigger than that of the free method but the residual stress ratio was vice versa.

  • PDF