• Title/Summary/Keyword: 대표단어

Search Result 248, Processing Time 0.027 seconds

NFRI 파트너 - ITER 프로젝트 참여로 더 큰 성장이 기대되는 기업 대봉아크로텍(주)

  • 국가핵융합연구소
    • 핵융합뉴스레터
    • /
    • s.48
    • /
    • pp.14-15
    • /
    • 2010
  • 1985년 대봉공업으로 세상에 첫발을 내딛은 대봉아크로텍(대표 장봉식)은 1992년 '크게 받들다'라는 뜻의 대봉(大奉)과 '최고의 기술력'이라는 아크로텍 (Acro+Tec)의 두 단어를 결합시킨 '대봉아크로텍'으로 사명을 변경하고 기존의 화공전문기업을 넘어서 새로운 도전을 거듭하는 울산의 대표기업이다. 특히 ITER 열차폐체 제작 수주에 성공하는 쾌거를 이룬 대봉아크로텍은 어제보다 오늘이 오늘보다 미래가 더 기대되는 젊은 기업이다.

  • PDF

유비쿼터스 컴퓨팅 환경에서의 LBS 발전방향

  • 조대수
    • 전기의세계
    • /
    • v.53 no.5
    • /
    • pp.48-56
    • /
    • 2004
  • 인터넷을 대표하는 웹 컴퓨팅 환경은 10여 년의 짧은 역사에도 불구하고, 현대인들의 생활에 필수적인 요소로 자리 잡고 있다. 몇 년 전 유행한 '넷맹' 이란 단어가 인터넷을 사용하지 못하는 사람이 일상생활에 많은 불편함이 있을 것임을 예고하였다면,2003년 1월 25일 국내 전역을 엄습했던 인터넷 대란은 이제 인터넷이 일상생활에서 확고히 자리 매김하고 있음을 증명해주고 있다. 향후, 인터넷 기술은 무선랜으로 대표되는 무선 컴퓨팅 환경을 지나, 유비쿼터스 컴퓨팅 환경으로 발전될 것으로 예상된다.(중략)

  • PDF

Developing a Text Categorization System Based on Unsupervised Learning Using an Information Retrieval Technique (정보검색 기술을 이용한 비지도 학습 기반 문서 분류 시스템 개발)

  • Noh, Dae-Wook;Lee, Soo-Yong;Ra, Dong-Yul
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.2
    • /
    • pp.160-168
    • /
    • 2007
  • For developing a text classifier using supervised learning, a manually labeled corpus of large size is required. However, it takes a lot of time and human effort. Recently a research paradigm was proposed to use a raw corpus and a small amount of seed information instead of manually labeled corpus. In this paper we introduce an unsupervised learning method that makes it possible to achieve better performance than other related works. The characteristics of our approach is that average mutual information is used to learn representative words and their weights and then update of the weights is done using a technique inspired by the works in information retrieval. By iterating this teaming process it was shown that a high performance system can be developed.

Document Embedding for Entity Linking in Social Media (문서 임베딩을 이용한 소셜 미디어 문장의 개체 연결)

  • Park, Youngmin;Jeong, Soyun;Lee, Jeong-Eom;Shin, Dongsoo;Kim, Seona;Seo, Junyun
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.194-196
    • /
    • 2017
  • 기존의 단어 기반 접근법을 이용한 개체 연결은 단어의 변형, 신조어 등이 빈번하게 나타나는 비정형 문장에 대해서는 좋은 성능을 기대하기 어렵다. 본 논문에서는 문서 임베딩과 선형 변환을 이용하여 단어 기반 접근법의 단점을 해소하는 개체 연결을 제안한다. 문서 임베딩은 하나의 문서 전체를 벡터 공간에 표현하여 문서 간 의미적 유사도를 계산할 수 있다. 본 논문에서는 또한 비교적 정형 문장인 위키백과 문장과 비정형 문장인 소셜 미디어 문장 사이에 선형 변환을 수행하여 두 문형 사이의 표현 격차를 해소하였다. 제안하는 개체 연결 방법은 대표적인 소셜 미디어인 트위터 환경 문장에서 단어 기반 접근법과 비교하여 높은 성능 향상을 보였다.

  • PDF

Korean Dependency Parsing as Machine Reading Comprehension (기계독해 기반 한국어 의존 파싱)

  • Min, Jinwoo;Na, Seung-Hoon;Shin, Jong-Hoon;Kim, Young-Kil;Kim, Kangil
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.270-273
    • /
    • 2021
  • 한국어 의존 파싱은 전이 기반 방식과 그래프 기반 방식의 두 갈래로 연구되어 왔고 그 중 그래프 기반 의존 파싱 방법은 문장 내의 모든 단어에 대해 인코딩한 후 지배소, 의존소에 대한 MLP를 적용하여 각각 표상을 얻고 Biaffine 어텐션을 통해 모든 단어 쌍에 대한 그래프 점수를 얻고 트리를 생성하는 방법이 대표적이다. Biaffine 어텐션 모델에서 문장 내의 각 단어들은 구문 트리 내의 서브트리의 역할을 하지만 두 단어간의 의존성만을 판단하기 때문에 서브 트리의 정보를 이용할 수 없다는 단점이 존재한다. 본 연구에서는 이러한 단점을 해결하기 위해 제안된 Span-Span(서브트리-서브트리)로의 서브트리 정보를 이용할 수 있도록 하는 기계 독해 기반 의존 파싱 모델을 한국어 구문 분석 데이터 셋에 적용하여 소폭의 성능향상을 얻었다.

  • PDF

Measuring a Valence and Activation Dimension of Korean Emotion Terms using in Social Media (소셜 미디어에서 사용되는 한국어 정서 단어의 정서가, 활성화 차원 측정)

  • Rhee, Shin-Young;Ko, Il-Ju
    • Science of Emotion and Sensibility
    • /
    • v.16 no.2
    • /
    • pp.167-176
    • /
    • 2013
  • User-created text data are increasing rapidly caused by development of social media. In opinion mining, User's opinions are extracted by analyzing user's text. A primary goal of sentiment analysis as a branch of opinion mining is to extract user's opinions from a text that is required to build a list of emotion terms. In this paper, we built a list of emotion terms to analyse a sentiment of social media using Facebook as a representative social media. We collected data from Facebook and selected a emotion terms, and measured the dimensions of valence and activation through a survey. As a result, we built a list of 267 emotion terms including the dimension of valence and activation.

  • PDF

Probing Semantic Relations between Words in Pre-trained Language Model (사전학습 언어모델의 단어간 의미관계 이해도 평가)

  • Oh, Dongsuk;Kwon, Sunjae;Lee, Chanhee;Lim, Heuiseok
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.237-240
    • /
    • 2020
  • 사전학습 언어모델은 다양한 자연어처리 작업에서 높은 성능을 보였다. 하지만, 사전학습 언어모델은 문장 내 문맥 정보만을 학습하기 때문에 단어간 의미관계 정보를 추론하는데는 한계가 있다. 최근에는, 사전학습 언어모델이 어느수준으로 단어간 의미관계를 이해하고 있는지 다양한 Probing Test를 진행하고 있다. 이러한 Test는 언어모델의 강점과 약점을 분석하는데 효율적이며, 한층 더 인간의 언어를 정확하게 이해하기 위한 모델을 구축하는데 새로운 방향을 제시한다. 본 논문에서는 대표적인 사전 학습기반 언어모델인 BERT(Bidirectional Encoder Representations from Transformers)의 단어간 의미관계 이해도를 평가하는 3가지 작업을 진행한다. 첫 번째로 단어 간의 상위어, 하위어 관계를 나타내는 IsA 관계를 분석한다. 두번째는 '자동차'와 '변속'과 같은 관계를 나타내는 PartOf 관계를 분석한다. 마지막으로 '새'와 '날개'와 같은 관계를 나타내는 HasA 관계를 분석한다. 결과적으로, BERTbase 모델에 대해서는 추론 결과 대부분에서 낮은 성능을 보이지만, BERTlarge 모델에서는 BERTbase보다 높은 성능을 보였다.

  • PDF

Detection of Porno Sites on the Web using Fuzzy Inference (퍼지추론을 적용한 웹 음란문서 검출)

  • 김병만;최상필;노순억;김종완
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.5
    • /
    • pp.419-425
    • /
    • 2001
  • A method to detect lots of porno documents on the internet is presented in this parer. The proposed method applies fuzzy inference mechanism to the conventional information retrieval techniques. First, several example sites on porno arc provided by users and then candidate words representing for porno documents are extracted from theme documents. In this process, lexical analysis and stemming are performed. Then, several values such as tole term frequency(TF), the document frequency(DF), and the Heuristic Information(HI) Is computed for each candidate word. Finally, fuzzy inference is performed with the above three values to weight candidate words. The weights of candidate words arc used to determine whether a liven site is sexual or not. From experiments on small test collection, the proposed method was shown useful to detect the sexual sites automatically.

  • PDF

Efficient Subword Segmentation for Korean Language Classification (한국어 분류를 위한 효율적인 서브 워드 분절)

  • Hyunjin Seo;Jeongjae Nam;Minseok Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.535-540
    • /
    • 2022
  • Out of Vocabulary(OOV) 문제는 인공신경망 기계번역(Neural Machine Translation, NMT)에서 빈번히 제기되어 왔다. 이를 해결하기 위해, 기존에는 단어를 효율적인 압축할 수 있는 Byte Pair Encoding(BPE)[1]이 대표적으로 이용되었다. 하지만 BPE는 빈도수를 기반으로 토큰화가 진행되는 결정론적 특성을 취하고 있기에, 다양한 문장에 관한 일반화된 분절 능력을 함양하기 어렵다. 이를 극복하기 위해 최근 서브 워드를 정규화하는 방법(Subword Regularization)이 제안되었다. 서브 워드 정규화는 동일한 단어 안에서 발생할 수 있는 다양한 분절 경우의 수를 고려하도록 설계되어 다수의 실험에서 우수한 성능을 보였다. 그러나 분류 작업, 특히 한국어를 대상으로 한 분류에 있어서 서브 워드 정규화를 적용한 사례는 아직까지 확인된 바가 없다. 이를 위해 본 논문에서는 서브 워드 정규화를 대표하는 두 가지 방법인 유니그램 기반 서브 워드 정규화[2]와 BPE-Dropout[3]을 이용해 한국어 분류 문제에 대한 서브 워드 정규화의 효과성을 제안한다. NMT 뿐만 아니라 분류 문제 역시 단어의 구성성 및 그 의미를 파악하는 것은 각 문장이 속하는 클래스를 결정하는데 유의미한 기여를 한다. 더불어 서브 워드 정규화는 한국어의 문장 구성 요소에 관해 폭넓은 인지능력을 함양할 수 있다. 해당 방법은 본고에서 진행한 한국어 분류 과제 실험에서 기존 BPE 대비 최대 4.7% 높은 성능을 거두었다.

  • PDF

Deep Learning-based Target Masking Scheme for Understanding Meaning of Newly Coined Words (신조어의 의미 학습을 위한 딥러닝 기반 표적 마스킹 기법)

  • Nam, Gun-Min;Seo, Sumin;Kwahk, Kee-Young;Kim, Namgyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.391-394
    • /
    • 2021
  • 최근 딥러닝(Deep Learning)을 활용하여 텍스트로 표현된 단어나 문장의 의미를 파악하기 위한 다양한 연구가 활발하게 수행되고 있다. 하지만, 딥러닝을 통해 특정 도메인에서 사용되는 언어를 이해하기 위해서는 해당 도메인의 충분한 데이터에 대해 오랜 시간 학습이 수행되어야 한다는 어려움이 있다. 이러한 어려움을 극복하고자, 최근에는 방대한 양의 데이터에 대한 학습 결과인 사전 학습 언어 모델(Pre-trained Language Model)을 다른 도메인의 학습에 적용하는 방법이 딥러닝 연구에서 많이 사용되고 있다. 이들 접근법은 사전 학습을 통해 단어의 일반적인 의미를 학습하고, 이후에 단어가 특정 도메인에서 갖는 의미를 파악하기 위해 추가적인 학습을 진행한다. 추가 학습에는 일반적으로 대표적인 사전 학습 언어 모델인 BERT의 MLM(Masked Language Model)이 다시 사용되며, 마스크(Mask) 되지 않은 단어들의 의미로부터 마스크 된 단어의 의미를 추론하는 형태로 학습이 이루어진다. 따라서 사전 학습을 통해 의미가 파악되어 있는 단어들이 마스크 되지 않고, 신조어와 같이 의미가 알려져 있지 않은 단어들이 마스크 되는 비율이 높을수록 단어 의미의 학습이 정확하게 이루어지게 된다. 하지만 기존의 MLM은 무작위로 마스크 대상 단어를 선정하므로, 사전 학습을 통해 의미가 파악된 단어와 사전 학습에 포함되지 않아 의미 파악이 이루어지지 않은 신조어가 별도의 구분 없이 마스크에 포함된다. 따라서 본 연구에서는 사전 학습에 포함되지 않았던 신조어에 대해서만 집중적으로 마스킹(Masking)을 수행하는 방안을 제시한다. 이를 통해 신조어의 의미 학습이 더욱 정확하게 이루어질 수 있고, 궁극적으로 이러한 학습 결과를 활용한 후속 분석의 품질도 향상시킬 수 있을 것으로 기대한다. 영화 정보 제공 사이트인 N사로부터 영화 댓글 12만 건을 수집하여 실험을 수행한 결과, 제안하는 신조어 표적 마스킹(NTM: Newly Coined Words Target Masking)이 기존의 무작위 마스킹에 비해 감성 분석의 정확도 측면에서 우수한 성능을 보임을 확인하였다.

  • PDF