대출데이터는 대학도서관에 축적된 중요한 데이터로서 도서관 장서개발이나 서비스 개선에 활용될 수 있는 중요한 데이터이다. 이 연구는 대출빈도를 기반으로 한 다양한 대출관련지수를 비교분석하여 지수별 특성을 파악한 후 도서관 운영에 적용할 수 있는 타당성을 평가하고자 하였다. A 대학도서관의 10개 단과대학별 대출데이터를 대상으로 비교분석한 지수는 대출빈도, 대출엔트로피, 대출 h-지수, 대출주제차별지수 등 총 4개의 지수이다. 이 지수들을 적용하여 단과대학별 대출현황을 분석하였고 단과대학별로 나타나는 대출주제의 특성을 표하는 각 지수의 특성을 비교 분석하였다. 분석 결과 대출 엔트로피는 여러 대학이 공통으로 선호하는 주제를 표현하는 성향이 있는 것으로 나타났다. 반면 대출주제차별지수는 특정대학에서만 특화되어 대출되는 주제를 표현하는 성향이 있는 것으로 나타났다.
본 논문은 C대학도서관의 학술정보시스템(LAS)에 구축되어 있는 장서와 대출기록 및 고객관련 데이터를 수집하여 이를 분석하고 그 결과를 고객관계관리(CRM)에 적용할 수 있는 방안을 제시하였다. 수집된 자료는 C대학도서관에서 소장하고 있는 대출이 가능한 단행본 총 269,387책의 서지데이타와 고객 12,281명의 데이터, 이용자 대출기록 39,269건이었다. 대출기록 분석 데이터에서 관계변수로 이용자 신분, 대출빈도, 대출책수와 대출횟수, 출판년도를 추출하여 데이터 마이닝 기법으로 분석하고, 상관계수로 검증하였다.
이 연구는 대학도서관 대출데이터를 활용하여 이용자들의 대출행태를 장서의 대출수명과 주제영역, 특정 이용자층과의 연관성 등의 다양한 관점에서 분석하였다. K대학도서관의 2006년부터 2015년까지 10년간 이용자들의 연도별 대출행태는 매해 20%의 대출도서가 전체 대출의 50%를 차지한다는 '대출도서 20/50 법칙'을 따르는 것으로 확인하였다. 또한 각 대출도서의 도서연령과 대출횟수의 연령별 누적분포를 구하여 도서 반감기를 정의하고 이를 수식화하였다. 종단적 관점에서의 핵심장서를 산출하여 그 특성을 주제별, 구성원별, 계열별, 연도별 등의 측면에서 분석하였다. 종단적 관점의 전체 대출도서와 핵심장서의 대출패턴은 모든 측면에서 매우 상이하게 분석되어 10년 동안 꾸준히 핵심장서로 분류되는 도서들의 역할이 있는 것으로 나타났다. 이는 10년간 꾸준히 대출되는 도서, 즉 핵심장서의 특성이 명확하다는 의미이며, 이러한 특성을 반영한 효율적인 장서구성정책을 개발할 필요성이 있다는 근거가 된다.
대학 도서관의 대출 업무에 관한 시스템 연구를 수행함에 있어 구조적 분석 기법을 이용하여 현행 대출 업무를 분석하고 새로운 대출 시스템을 설계하였다. 기존 대출 업무 분 석에서는 구조적 개발 도구인 자료 흐름도와 자료 사전, 실체 관계도들을 기용하여 데이터 분석을 시도하였으며 시스템 설계에서는 분석한 데이터 구조를 데이터 표준화 작업을 통해 새 시스템의 논리적, 물리적 데이터 모델을 제시하였다.
본 연구는 P2P(Peer-to-Peer) 대출의 부도위험 예측을 위하여 준지도학습(SSL) 기반의 모델을 개발하고자 한다. 검증된 성능에도 불구하고 지도학습(SL) 방법은 완전 지불 또는 채무불이행과 같이 레이블이 결정된 다수의 데이터가 필요한데 충분한 수의 레이블 데이터를 수집하려면 많은 자원과 시간이 필요하다. P2P 플랫폼이 급성장하면서 대출 건수도 매해 급증하였고, 레이블이 없는 데이터도 지속적으로 증가하고 있다. 본 연구는 P2P 대출 플랫폼인 LendingClub에서 수집한 데이터를 사용하였다. P2P 대출 중 레이블이 결정된 대출에서 추출한 정보뿐만 아니라 레이블이 결정되지 않은 대출에서 추출한 정보도 사용하여 부도 위험을 예측하는 SSL 모델을 개발하여 연구를 수행한 결과, 적은 수의 레이블이 결정된 데이터를 사용함에도 불구하고 SSL 방법으로 구축된 모델이 많은 수의 레이블이 결정된 데이터를 사용하여 학습시킨 SL 방법으로 구축된 모델보다 부도 위험 예측성과가 향상되었다.
Journal of the Korean Data and Information Science Society
/
제24권3호
/
pp.411-425
/
2013
데이터마이닝이란 대용량의 자료로부터 의미있는 패턴과 규칙을 찾기 위해서 자동화되거나 반자 동화된 도구를 이용하여 데이터를 탐색하고 분석하는 과정이다. 이러한 데이터마이닝 기법을 통해 정보의 연관성을 파악함으로써 가치 있는 정보를 만들어 합리적인 의사 결정이 가능하게 된다. 금융분야에서도 데이터베이스 마케팅, 신용평가, 서비스 품질개선, 부정행위 적발 등에 데이터마이닝 기법이 다양하게 사용되고 있다. 금융거래에서 대출의 중요도와 필요성이 시간이 지날수록 점점 높아지고 있으나, 대출을 이용하는 사람과 대출건수가 증가할수록 부실대출의 위험이 함께 증가하기 때문에 대출을 해주는 여신기관의 손실을 막기 위해서는 대출여부를 정확하게 예측할 필요성이 존재한다. 본 연구에서는 국내 A 여신기관의 실제 데이터를 사용하여 대출심사에 관한 연구를 진행하였으며, 모형 구축에 있어서 안정적이고 정확한 예측을 보이는 모형을 찾기 위하여 원 데이터에서의 샘플 정제와 여러가지 모형, 데이터마이닝 기법 등을 사용하여 다양한 모형을 구축하고 비교, 평가하였다.
본 연구는 학계와 현장의 도서관 빅데이터 관련 움직임을 살펴보고 이를 토대로 도서관 빅데이터 플랫폼인 도서관 정보나루의 장서/대출데이터를 대상으로 기초 분석을 수행하였다. 이를 위해 도서관과 빅데이터에 관한 선행연구와 활용사례를 참고하여 연도별 장서증가량, 주제별 장서구성비, 미대출 장서구성비, 주제별 장서회전율, 그리고 주제별 이용계수의 5가지 분석지표를 선정하였다. 분석에 사용된 도서관 데이터는 부산지역 33개 공공도서관의 장서/대출데이터 6,722,603건이다. 주요한 분석 결과는 다음과 같다. 첫째, 33개 공공도서관 간 장서수보다 대출수의 격차가 큰 것으로 나타났다. 둘째, 연간 장서증가량도 뚜렷한 하락세를 보였다. 셋째, 소장 장서의 주제별 구성과 미대출 장서의 주제별 구성에 있어서 각 도서관들이 비슷한 양상을 나타냈다. 넷째, 이용자들의 대출은 주제별, 도서관별로 매우 상이한 것으로 나타났다. 다섯째, 대부분의 도서관에서 자연과학 분야 장서회전율과 이용계수가 가장 높게 나타났다.
본 연구의 목적은 다문화 이용자 밀집지역에 있는 도서관의 장서와 대출데이터를 정량적으로 분석하여 이용자들의 소장장서에 대한 장서활용도를 살펴보고 이를 토대로 다문화 도서관을 위한 정책적 시사점을 제시하는데 있다. 안산다문화작은도서관을 대상으로 2016년부터 2022년까지 장서·대출 이용 데이터를 분석하였다. 연도별, 언어별, 주제별로 소장도서수, 대출수, 비중, 장서회전율과 이용계수를 산출하여 장서이용도를 파악하였다. 개별도서별 누적대출수를 기준으로 누적 합계를 산출하여 대출 분포와 장서이용율 추이를 살펴보았다. 다문화 장서의 평가와 장서활용도를 기반으로 증거 기반의 장서개발 지침에 활용할 근거를 제공하고 다문화 도서관을 위한 정책을 제안하였다.
본 연구는 은행에서 리스크 관리 자동화를 위해 고객의 대출 상환 여부 예측 모델을 제안하고자 한다. 예측 모델로 금융 데이터 같은 정형데이터에서 전통적으로 높은 성능을 보인 의사결정나무기반 모델 LightGBM, CatBoost, XGB 와 최근 제안된 정형데이터에서 사용할 수 있는 설명 가능한 딥러닝 기반 모델 TabNet 간의 성능 비교를 진행한다. 다만, 대출 상환 여부 데이터는 불균형 클래스 데이터로 구성되어있어 샘플링을 진행한다. SMOTE, Random Under Sampling, 혼합 방식을 비교해 가장 높은 성능의 샘플링 기법을 제안한다. 대출 상환 여부 예측 결과 TabNet 모델이 의사결정나무모델들보다 좋은 성능을 보여 정형데이터에서 의사결정나무 기반 모델을 딥러닝 모델이 대체 할 수 있는 가능성을 확인했다.
본 연구는 도서의 대출정보를 활용해 가중네트워크(PFNET :PathFinder Network) 분석을 수행함으로써 특수 계층으로서 남녀 노령자에 의해 자주 읽히는 도서의 주제와 특성을 이해하고 이들의 독서 양태가 일반 성인 남녀와 어떠한 차이를 보이는지 확인하였다. 이를 위해 남녀 노령자와 일반 성인 남녀로 구성된 4개 집단을 대상으로 도서관 빅데이터의 인기 대출도서를 기반으로 동시대출도서 행렬을 산출하고 이를 활용해 네트워크 분석을 수행하였다. 또한 PNNC(Parallel Nearest Neighbor Clustering) 알고리즘으로 대출도서 군집을 형성한 후 대출도서에 계산된 중심성지수를 기반으로 피어슨 상관분석(Pearson Correlation Analysis)을 수행해 집단간의 상관성을 파악하였다. 그 결과 자기계발, 재태크, 육아 등 다양한 분야의 도서를 대출하는 일반 성인 남녀에 비해 노령자 계층은 한국현대소설에 집중된 독서 활동을 하는 것으로 나타났으며, 특정 인기 저자의 저작에 집중된 도서 대출 경향을 보였다. 한편 여성 노령자가 일본소설, 영미소설을 포함해 상대적으로 다양한 분야를 대출하는 반면 남성 노령자는 극단적으로 한국대하소설에 집중하는 경향을 나타냈다. 상관분석에서도 남성 노령자는 성인 남성과 r=-0.222의 약한 음의 상관성을 보였으며, 다른 모든 집단과도 음의 방향성을 보여 대출 도서의 중심성이 반대 경향을 가지는 것으로 분석되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.