• Title/Summary/Keyword: 대조적 학습

Search Result 204, Processing Time 0.038 seconds

Contrastive Learning of Sentence Embeddings utilizing Semantic Search through Re-Ranker of Cross-Encoder (문장 임베딩을 위한 Cross-Encoder의 Re-Ranker를 적용한 의미 검색 기반 대조적 학습)

  • Dongsuk Oh;Suwan Kim;Kinam Park;Heuiseok Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.473-476
    • /
    • 2022
  • 문장 임베딩은 문장의 의미를 고려하여 모델이 적절하게 의미적인 벡터 공간에 표상하는 것이다. 문장 임베딩을 위해 다양한 방법들이 제안되었지만, 최근 가장 높은 성능을 보이는 방법은 대조적 학습 방법이다. 대조적 학습을 이용한 문장 임베딩은 문장의 의미가 의미적으로 유사하면 가까운 공간에 배치하고, 그렇지 않으면 멀게 배치하도록 학습하는 방법이다. 이러한 대조적 학습은 비지도와 지도 학습 방법이 존재하는데, 본 논문에서는 효과적인 비지도 학습방법을 제안한다. 기존의 비지도 학습 방법은 문장 표현을 학습하는 언어모델이 자체적인 정보를 활용하여 문장의 의미를 구별한다. 그러나, 하나의 모델이 판단하는 정보로만 문장 표현을 학습하는 것은 편향적으로 학습될 수 있기 때문에 한계가 존재한다. 따라서 본 논문에서는 Cross-Encoder의 Re-Ranker를 통한 의미 검색으로부터 추천된 문장 쌍을 학습하여 기존 모델의 성능을 개선한다. 결과적으로, STS 테스크에서 베이스라인보다 2% 정도 더 높은 성능을 보여준다.

  • PDF

Comparison and Analysis of Unsupervised Contrastive Learning Approaches for Korean Sentence Representations (한국어 문장 표현을 위한 비지도 대조 학습 방법론의 비교 및 분석)

  • Young Hyun Yoo;Kyumin Lee;Minjin Jeon;Jii Cha;Kangsan Kim;Taeuk Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.360-365
    • /
    • 2022
  • 문장 표현(sentence representation)은 자연어처리 분야 내의 다양한 문제 해결 및 응용 개발에 있어 유용하게 활용될 수 있는 주요한 도구 중 하나이다. 하지만 최근 널리 도입되고 있는 사전 학습 언어 모델(pre-trained language model)로부터 도출한 문장 표현은 이방성(anisotropy)이 뚜렷한 등 그 고유의 특성으로 인해 문장 유사도(Semantic Textual Similarity; STS) 측정과 같은 태스크에서 기대 이하의 성능을 보이는 것으로 알려져 있다. 이러한 문제를 해결하기 위해 대조 학습(contrastive learning)을 사전 학습 언어 모델에 적용하는 연구가 문헌에서 활발히 진행되어 왔으며, 그중에서도 레이블이 없는 데이터를 활용하는 비지도 대조 학습 방법이 주목을 받고 있다. 하지만 대다수의 기존 연구들은 주로 영어 문장 표현 개선에 집중하였으며, 이에 대응되는 한국어 문장 표현에 관한 연구는 상대적으로 부족한 실정이다. 이에 본 논문에서는 대표적인 비지도 대조 학습 방법(ConSERT, SimCSE)을 다양한 한국어 사전 학습 언어 모델(KoBERT, KR-BERT, KLUE-BERT)에 적용하여 문장 유사도 태스크(KorSTS, KLUE-STS)에 대해 평가하였다. 그 결과, 한국어의 경우에도 일반적으로 영어의 경우와 유사한 경향성을 보이는 것을 확인하였으며, 이에 더하여 다음과 같은 새로운 사실을 관측하였다. 첫째, 사용한 비지도 대조 학습 방법 모두에서 KLUE-BERT가 KoBERT, KR-BERT보다 더 안정적이고 나은 성능을 보였다. 둘째, ConSERT에서 소개하는 여러 데이터 증강 방법 중 token shuffling 방법이 전반적으로 높은 성능을 보였다. 셋째, 두 가지 비지도 대조 학습 방법 모두 검증 데이터로 활용한 KLUE-STS 학습 데이터에 대해 성능이 과적합되는 현상을 발견하였다. 결론적으로, 본 연구에서는 한국어 문장 표현 또한 영어의 경우와 마찬가지로 비지도 대조 학습의 적용을 통해 그 성능을 개선할 수 있음을 검증하였으며, 이와 같은 결과가 향후 한국어 문장 표현 연구 발전에 초석이 되기를 기대한다.

  • PDF

On the Effectiveness of the Special Token Cutoff Method for Korean Sentence Representation in Unsupervised Contrastive Learning (비지도 대조 학습에서 한국어 문장 표현을 위한 특수 토큰 컷오프 방법의 유효성 분석)

  • Myeongsoo Han;Yoo Hyun Jeong;Dong-Kyu Chae
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.491-496
    • /
    • 2023
  • 사전학습 언어모델을 개선하여 고품질의 문장 표현(sentence representation)을 도출하기 위한 다양한 대조 학습 방법에 대한 연구가 진행되고 있다. 그러나, 대부분의 대조학습 방법들은 문장 쌍의 관계만을 고려하며, 문장 간의 유사 정도를 파악하는데는 한계가 있어서 근본적인 대조 학습 목표를 저해하였다. 이에 최근 삼중항 손실 (triplet loss) 함수를 도입하여 문장의 상대적 유사성을 파악하여 대조학습의 성능을 개선한 연구들이 제안되었다. 그러나 많은 연구들이 영어를 기반으로한 사전학습 언어모델을 대상으로 하였으며, 한국어 기반의 비지도 대조학습에 대한 삼중항 손실 함수의 실효성 검증 및 분석은 여전히 부족한 실정이다. 본 논문에서는 이러한 방법론이 한국어 비지도 대조학습에서도 유효한지 면밀히 검증하였으며, 다양한 평가 지표를 통해 해당 방법론의 타당성을 확인하였다. 본 논문의 결과가 향후 한국어 문장 표현 연구 발전에 기여하기를 기대한다.

  • PDF

Efficient contrastive learning method through the effective hard negative sampling from DPR (DPR의 효과적인 하드 네거티브 샘플링을 통한 효율적인 대조학습 방법)

  • Seong-Heum Park;Hongjin Kim;Jin-Xia Huang;Oh-Woog Kwon;Harksoo Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.348-353
    • /
    • 2022
  • 최근 신경망 기반의 언어모델이 발전함에 따라 대부분의 검색 모델에서는 Bi-encoder를 기반으로한 Dense retrieval 모델에 대한 연구가 진행되고 있다. 특히 DPR은 BM25를 통해 정답 문서와 유사한 정보를 가진 하드 네거티브를 사용하여 대조학습을 통해 성능을 더욱 끌어올린다. 그러나 BM25로 검색된 하드 네거티브는 term-base의 유사도를 통해 뽑히기 때문에, 의미적으로 비슷한 내용을 갖는 하드 네거티브의 역할을 제대로 수행하지 못하고 대조학습의 효율성을 낮출 가능성이 있다. 따라서 DRP의 대조학습에서 하드 네거티브의 역할을 본질적으로 수행할 수 있는 문서를 샘플링 하는 방법을 제시하고, 이때 얻은 하드 네거티브의 집합을 주기적으로 업데이트 하여 효과적으로 대조학습을 진행하는 방법을 제안한다. 지식 기반 대화 데이터셋인 MultiDoc2Dial을 통해 평가를 수행하였으며, 실험 결과 기존 방식보다 더 높은 성능을 나타낸다.

  • PDF

The Effects of Team-Based Learning(TBL) for Edutainment Activation in Nursing Students (간호대학생의 에듀테인먼트 활성화를 위한 팀기반학습(TBL) 효과)

  • Kim, Yu-Jeong
    • Journal of Korea Entertainment Industry Association
    • /
    • v.13 no.7
    • /
    • pp.397-408
    • /
    • 2019
  • Purpose: The purpose of this study was to examine the effects of team-based learning(TBL) program on problem solving ability, self-directed learning and learning motivation of nursing students in a adult nursing course. Methods: This study was quasi-experimental study by using nonequivalent control group pretest-posttest design. Participants were 132 nursing students consisting of each experiment group 66 and control group 66. The experiment group was provided TBL program for 2 hours per session during 6 sessions and control group was provided lecture. Data were collected by questionnaires from April 20 to June 19, 2018. Data was analyzed by a chi-square test, t-test and ANCOVA using IBM SPSS 21.0 program. Results: The mean scores of problem solving ability(F=9.179, p=.003), self-directed learning(F=7.447, p=.007) and learning motivation(F=7.974, p=.006) were significantly higher in experiment group than those in control group. Conclusion: TBL program in a adult nursing course was effective in problem solving ability, self-directed learning and learning motivation of nursing students.

The Effects of Team-Based Learning on Outcome based Nursing Education (성과기반 간호교육에서 팀기반학습 적용의 효과)

  • Oh, Hyo-Sook
    • Journal of Digital Convergence
    • /
    • v.13 no.9
    • /
    • pp.409-418
    • /
    • 2015
  • This study was performed to develop and evaluate the effects of Team-Based Learning(TBL) on cardiac problem in adult nursing. The study measured problem-solving ability, critical thinking disposition, academic achievement and, class satisfaction for learning outcomes of course. Pretest-posttest design with nonequivalent control group was utilized to analyze the effects of TBL. Experimental group and control group each consisting of 52, 54 participants was picked from the junior students. The experimental group was given the TBL for 6 hours and control group was given a lecture and case-based announcement class. In results, significant improvements were found in problem-solving ability(F=5.92, p=.017), and class satisfaction(F=5.80, p=.018). Critical thinking disposition and academic achievement of experimental group were improved than those of control group, but there were not statistically significant difference.

Key Frame Detection Using Contrastive Learning (대조적 학습을 활용한 주요 프레임 검출 방법)

  • Kyoungtae, Park;Wonjun, Kim;Ryong, Lee;Rae-young, Lee;Myung-Seok, Choi
    • Journal of Broadcast Engineering
    • /
    • v.27 no.6
    • /
    • pp.897-905
    • /
    • 2022
  • Research for video key frame detection has been actively conducted in the fields of computer vision. Recently with the advances on deep learning techniques, performance of key frame detection has been improved, but the various type of video content and complicated background are still a problem for efficient learning. In this paper, we propose a novel method for key frame detection, witch utilizes contrastive learning and memory bank module. The proposed method trains the feature extracting network based on the difference between neighboring frames and frames from separate videos. Founded on the contrastive learning, the method saves and updates key frames in the memory bank, witch efficiently reduce redundancy from the video. Experimental results on video dataset show the effectiveness of the proposed method for key frame detection.

SimKoR: A Sentence Similarity Dataset based on Korean Review Data and Its Application to Contrastive Learning for NLP (SimKoR: 한국어 리뷰 데이터를 활용한 문장 유사도 데이터셋 제안 및 대조학습에서의 활용 방안 )

  • Jaemin Kim;Yohan Na;Kangmin Kim;Sang Rak Lee;Dong-Kyu Chae
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.245-248
    • /
    • 2022
  • 최근 자연어 처리 분야에서 문맥적 의미를 반영하기 위한 대조학습 (contrastive learning) 에 대한 연구가 활발히 이뤄지고 있다. 이 때 대조학습을 위한 양질의 학습 (training) 데이터와 검증 (validation) 데이터를 이용하는 것이 중요하다. 그러나 한국어의 경우 대다수의 데이터셋이 영어로 된 데이터를 한국어로 기계 번역하여 검토 후 제공되는 데이터셋 밖에 존재하지 않는다. 이는 기계번역의 성능에 의존하는 단점을 갖고 있다. 본 논문에서는 한국어 리뷰 데이터로 임베딩의 의미 반영 정도를 측정할 수 있는 간단한 검증 데이터셋 구축 방법을 제안하고, 이를 활용한 데이터셋인 SimKoR (Similarity Korean Review dataset) 을 제안한다. 제안하는 검증 데이터셋을 이용해서 대조학습을 수행하고 효과성을 보인다.

  • PDF

Data Augmentation Strategy based on Token Cut-off for Using Triplet Loss in Unsupervised Contrastive Learning (비지도 대조 학습에서 삼중항 손실 함수 도입을 위한 토큰 컷오프 기반 데이터 증강 기법)

  • Myeongsoo Han;Yoo Hyun Jeong;Dong-Kyu Chae
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.618-620
    • /
    • 2023
  • 최근 자연어처리 분야에서 의미론적 유사성을 반영하기 위한 대조 학습 (contrastive learning) 관련 연구가 활발히 이뤄지고 있다. 이러한 대조 학습의 핵심은 의미론적으로 가까워져야 하는 쌍과 멀어져야 하는 쌍을 잘 구축하는 것이지만, 기존의 손실 함수는 문장의 상대적인 유사성을 풍부하게 반영하는데 한계가 있다. 이를 해결하기 위해, 이전 연구에서는 삼중 항 손실 함수 (triplet loss)를 도입하였으며, 본 논문에서는 이러한 삼중 항을 구성하기 위해 대조 학습에서의 효과적인 토큰 컷오프(cutoff) 데이터 증강 기법을 제안한다. BERT, RoBERTa 등 널리 활용되는 언어 모델을 이용한 실험을 통해 제안하는 방법의 우수한 성능을 보인다.

Effect of Flipped Learning Using Media Convergence in Practice Education on Academic Self-efficacy and Self-directed Learning of Nursing Students (미디어 융합 활용 플립러닝 기반 실습 수업이 간호대학생의 학업적 자기효능감과 자기주도학습에 미치는 효과)

  • Kim, Og Son
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.6
    • /
    • pp.49-58
    • /
    • 2020
  • This study was conducted to identify the changes in academic self-efficacy and self-directed learning ability after applying flipped learning using media convergence to the basic nursing practice courses. It is offering flipped learning to 22 students from the experimental group and 26 students from the control group. Data were collected from August 27 to December 3, 2019. The difference in academic self-efficacy before and after the flipped learning was no significant difference between the two groups. However, the difference in self-directed learning ability was 11.32 points in the experimental group and 0.23 points in the control group (t=2.32, p=.027). According to the results of this study, flipped learning using media convergence was found to be an effective teaching method to improve self-directed learning ability of students. Therefore, it is necessary to study the expanded application of flipped learning using media convergence to various nursing subjects.