• 제목/요약/키워드: 대수형 학습효과

검색결과 4건 처리시간 0.023초

대수형 학습효과에 근거한 소프트웨어 신뢰모형에 관한 통계적 공정관리 비교 연구 (The Assessing Comparative Study for Statistical Process Control of Software Reliability Model Based on Logarithmic Learning Effects)

  • 김경수;김희철
    • 디지털융복합연구
    • /
    • 제11권12호
    • /
    • pp.319-326
    • /
    • 2013
  • 소프트웨어의 디버깅 오류의 발생 시간에 의존하는 많은 소프트웨어 신뢰성 모델이 연구되었다. 소프트웨어 오류 탐색 기법은 사전에 알지 못하지만 자동적으로 발견되는 에러를 고려한 영향요인과 사전 경험에 의하여 세밀하게 에러를 발견하기 위하여 테스팅 관리자가 설정해놓은 요인인 학습효과의 특성에 대한 문제를 비교 제시 하였다. 본 연구에서는 학습효과 비동질적인 유한고장모형 분석을 위한 모수 추정은 우도함수를 이용하였다. 소프트웨어 시장에 인도하기 위한 결정에 대하여 조건부 고장률은 중요한 변수가 되고 이러한 고장 모델은 실제 상황에서 많이 사용되고 있다. 통계적 공정 관리 (SPC)는 소프트웨어 오류의 예측을 모니터링 함으로써 소프트웨어의 신뢰성 향상에 크게 기여할 수 있다. 이러한 컨트롤 차트는 널리 소프트웨어 산업의 소프트웨어 프로세스 제어를 위해 사용된다. 본 연구에서는 로그 위험 학습 효과 속성의 비동질적인 포아송 과정의 평균값 기능을 사용한 컨트롤 메커니즘을 제안하였다.

고등학교 주문형 강좌 선형대수 교과목 운영사례 : 전통적 방식과 플립러닝 방식의 혼합수업 형태 및 신호처리 응용 (The Case Study of High School On-demand Linear Algebra Course : Mixed Traditional and Flipped Learning Methods ans Signal Processing Applications)

  • 유재하
    • 융합신호처리학회논문지
    • /
    • 제24권3호
    • /
    • pp.147-152
    • /
    • 2023
  • 본 논문은 고등학교 주문형 강좌에서 진행된 선형대수학 교과목 수업사례에 대한 연구이다. 일반적인 수업과 비교하여 플립러닝 수업이 추가되었고, 학생들의 진로 희망 분야를 고려하여 신호처리 관련 응용문제에 대한 적용도 다루었다. 전체적으로 보면, 전통적 방식의 강의 수업과 플립러닝이 혼합된 형태로 수업이 진행되었다. 플립러닝은 2차례 실시되었다. 플립러닝 수업은 사전학습, 조별 협력학습, 사후학습으로 구성되었다. 수업의 효과성을 검증하기 위하여 설문조사를 실시하였고 대부분의 평가 항목이 4점 이상이었다. 플립러닝의 주제는 신호처리 분야에서도 매우 비중 있게 다루어지는 마르코프 체인과 최소제곱법을 대상으로 진행되었다.

대수 선형 위험함수 학습효과에 근거한 NHPP 신뢰성장 소프트웨어 모형에 관한 비교 연구 (The Comparative Study for NHPP Software Reliability Model based on the Property of Learning Effect of Log Linear Shaped Hazard Function)

  • 김희철;신현철
    • 융합보안논문지
    • /
    • 제12권3호
    • /
    • pp.19-26
    • /
    • 2012
  • 본 연구에서는 소프트웨어 제품을 개발하여 테스팅을 하는 과정에서 소프트웨어 관리자들이 소프트웨어 및 검사 도구에 효율적인 학습기법을 이용한 NHPP 소프트웨어 모형에 대하여 연구 하였다. 적용모형은 로그 형 위험함수 모형을 적용한 유한고장 NHPP에 기초하였다. 소프트웨어 오류 탐색 기법은 사전에 알지 못하지만 자동적으로 발견되는 에러를 고려한 자동에러탐색요인과 사전 경험에 의하여 세밀하게 에러를 발견하기 위하여 테스팅 관리자가 설정해놓은 요인인 학습효과의 특성에 대한 문제를 비교 제시 하였다. 그 결과 학습요인이 자동 에러 탐색요인보다 큰 경우가 대체적으로 효율적인 모형임을 확인 할 수 있었다. 본 논문의 소프트웨어 고장 자료 분석에서는 고장 간격 시간 자료를 적용하고 모수추정 방법은 최우추정 법을 이용하고 추세분석을 통하여 자료의 효율성을 입증한 후 평균제곱오차와 $R^2$(결정계수)를 이용하여 효율적인 모형을 선택 비교하였다.

대학수학교육에서의 챗GPT 활용과 사례 (Use of ChatGPT in college mathematics education)

  • 이상구;박도영;이재윤;임동선;이재화
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제63권2호
    • /
    • pp.123-138
    • /
    • 2024
  • 본 연구는 S대학 <인공지능을 위한 기초수학[Math4AI]> 강좌의 교수·학습과정에서 맞춤형 챗GPT를 개발하여 활용한 경험을 공유한다. 연구진은 ① 먼저 강좌 맞춤형 챗GPT (https://math4ai.solgitmath.com/)를 개발하였다. 이때 챗GPT가 부정확한 정보를 주지 않도록 수년간의 해당 강좌 주요 데이터(교재, 실습실, 토론 기록, 코드 등)를 우선적으로 학습하는 챗GPT의 기능을 적용하였다. ② 학생들이 교재를 스스로 학습하다 궁금한 부분이 생기면, 맞춤형 챗GPT 인터페이스를 통해 자연어로 수학 용어, 정리, 예제, 열린 문제 번호, 핵심어 등을 질문하여 도움을 얻을 수 있도록 하였다. 그러면 챗GPT는 관련된 주요 문제나 용어, 그리고 이전 학생들의 토론에 기반한 몇 가지 샘플 답안 또는 토론 내용과 함께 사용되었던 코드 샘플을 제공한다. ③ 학생들이 챗GPT를 통해 얻은 내용을 스스로 윤문하여 공유하고, 상호 토론하면서, 교재에서 제시하는 주요 개념과 열린 문제의 대부분을 이해하도록 하였다. ④ 학기 말에는 그간 본인이 얻은 열린 문제들에 대한 학습기록을 모아 PBL (Problem-Based Learning) 보고서로 제출하고, 발표하여 강좌를 수료하도록 하였다. 이러한 방식은 학생들이 학습을 포기하지 않고 한 단계 앞으로 더 나아갈 추진력과 동기를 주며, 궁극적으로 각각의 문제를 스스로 해결하는 자기 주도적 학습을 도울 수 있다. 또한 학생들 각자의 수준에 맞추어 실시간으로 최적화된 조언을 제시하므로 강좌뿐만 아니라 대학수학교육 전반에 대한 학생별 맞춤형 교육(personalized education)을 제공할 수 있다. 즉, 학생들이 담당교수(또는 조교)와 AI 조교의 도움으로 실시간 답변과 효과적인 조언을 받을 수 있게 됨을 의미한다. 이는 양질의 조교 부족에 대한 고민을 추가 비용 없이 획기적으로 해결할 수 있다. 본 연구는 강좌의 교수·학습과정에 교재 맞춤형 챗GPT를 접목한 것으로, 인공지능(AI) 기술을 기타 대학수학 과목들(미적분학, 선형대수학, 이산수학, 공학수학, 기초통계학 등)과 초·중·고 수학교육에 적용할 수 있는 새로운 방법을 제시한다. 특히 AI 기술을 적용하여 이전 수강생들의 학습기록(열린 문제 풀이, 토론 자료, 코드 등)을 참고하며, 각자 실습한 결과를 공유 및 상호 토론하여 문제를 해결하는 방식은, 다양한 전공의 학생들이 내용을 더 효과적으로 이해하고, 본인 전공 관련 문제 해결 능력을 향상시키는 데 획기적인 도움을 줄 것으로 예상된다. 또한 교재 맞춤형 챗GPT와 함께 자기주도적인 학습을 경험토록 하는 교수학습 방법은 평생 교육(lifelong learning, extension school, extension college, extended college) 또는 평생학습의 관점에서 중요하다.