• 제목/요약/키워드: 대수적 풀이

검색결과 34건 처리시간 0.023초

테크놀로지를 활용한 교수학적 환경에서 대수적 연산 오류 지도에 관한 연구

  • 박용범;탁동호
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제18권1호
    • /
    • pp.223-237
    • /
    • 2004
  • 본 연구는 중학교 1학년을 대상으로 일차방정식의 풀이 과정에서 나타나는 오류를 분석하고 그래핑 계산기를 활용하여 오류의 교정 과정을 제시하였다. 오류의 유형을 개념적 이해 미흡 오류, 등식의 성질에 대한 오류, 이항에 대한 오류, 계산 착오로 인한 오류, 기호화에 의한 오류로 분류하였으며, 이 중에서 등식의 성질에 대한 오류와 개념적 이해 미흡으로 인한 오류를 많이 범하고 있었다. 학생들이 TI-92를 활용하여 일차방정식의 해를 구할 때, Home Mode에서 Solve 기능을 이용하여 단순히 결과만을 보는 것 보다 Symbolic Math Guide를 이용하여 풀이 과정을 선택하여 대수적 알고리즘을 형성하면서 해를 구하는 것을 선호하였다. 그리고 학생들의 정의적 및 기능적 측면을 고려해야 할 필요성을 느끼게 되었다.

  • PDF

선형 대수의 가르침에 고려하여야 할 사항에 관한 연구

  • 최영한
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제18권2호
    • /
    • pp.93-108
    • /
    • 2004
  • Wassily Leontief가 미국 경제의 모델에 선형 대수를 적용한 이론으로 1973년에 노벨 경제학상을 받은 후로는 인문${\cdot}$사회 과학(특히 상경(商經) 분야)을 전공하는 사람에게도 선형 대수는 큰 관심 분야가 되었다. 그래서 1980년대 부터는 대학의 기초 과목으로써 선형 대수를 가르치는 것은 유행처럼 퍼졌고 또 가르침에 관한 연구도 활발하여졌다. 현행 우리나라의 초${\cdot}$${\cdot}$고등 학교의 수학과 교육과정(이른바 “제 7차 개정”) 속에는 선형대수의 내용이 어느 정도 있으나 학생들에게 확실한 개념을 갖도록 가르치고 있지 않다. 수직선, 순서 쌍, n-겹수, 직교 좌표, 벡터 등 해석기하적인 내용과 선형 방정식계의 풀이법(가우스${\cdot}$조르단 소거법을 쓰지 않는 풀이법) 등 일반 대수적인 내용은 다루지만 선형 변환, 벡터 공간의 구조 등은 다루지 않는다. m${\sim}$n 행렬은 수학II에 나와 있긴 하나 소개하는 정도에 그친다. 한편 과학 계열 고등학교 학생을 위한 "고급 수학"에는 비교적 많은 양의 선형 대수의 내용이 있다. 일반 계열 고등학교의 수학에서도 선형 대수의 내용을 확장하고 학생들에게 확실한 개념을 갖도록 가르쳐서 이들이 대학에 진학하여 전공 분야에서 아무 어려움이 없도록 하는 것이 바람직하다.

  • PDF

극한 문제의 풀이 과정에서 대수적 절차와 그래프를 이용한 방식의 연결에 대한 사례연구 (A case study on students' expressions in solving the limitations of functions problems)

  • 이동근
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제58권1호
    • /
    • pp.79-99
    • /
    • 2019
  • This study is a study to collect information about 'Limitations of functions' related learning. Especially, this study was conducted on three students who can find answers by algebraic procedure in the process of extreme problem solving. Students have had the experience of converting from their algebraic procedures to graphical expressions. This shows how they reflect on their algebraic procedures. This study is a study that observes these parts. To accomplish this, twelfth were teaching experiment in three high school students. And we analyzed the contents related to the research topic of this study. Through this, students showed the difference of expressions in the method of finding limits by using algebraic interpretation methods and graphs. In addition, we examined the connectivity of the limitations of functions problem solving process of functions using algebraic procedures and graphs in the process of converting algebraic expressions to graph expressions. This study is a study of how students construct limit concepts. As in this study, it is meaningful to accumulate practical information about students' limit conceptual composition. We hope that this study will help students to study limit concept development process for students who have no limit learning experience in the future.

컴퓨터 대수체계(CAS) 대비 중등대수교육 기초 연구 (Comparative Study in Algebra Education with CAS: Korea and US cases)

  • 장경윤
    • 대한수학교육학회지:학교수학
    • /
    • 제10권2호
    • /
    • pp.297-317
    • /
    • 2008
  • 본 연구는 중등학교에서 CAS도입을 대비한 기초연구로 CAS 환경에서 모델링 문제해결 과정과 CAS 활용방식을 조사하였다. 수학교육과정 배경과 CAS 장착 정도가 문제해결과정과 CAS 사용전략에 변인이 될 가능성을 고려하여 비교연구로 수행하였으며 한 미 고등학교 2학년생 각 8명과 26명이 연구에 참여하였다. 연구결과 고전적 상자문제에서 CAS는 기호조작명령어와 그래프로 문제해결에 도움이 되었으나 수학적 개념이나 통찰을 대신하지 않았으며, 수학적 모델의 분석과 풀이, 결과 적용과 해석, CAS사용에 있어서 집단간 질적인 차이를 보였다. 수업을 통해 CAS 장착이 비교적 안정된 미국학생들 다수가, 한국 학생들과 대조적으로, 중간값 정리를 적용하여 해의 범위를 추정하는데 CAS를 사용하였으며 여러 표상의 연결을 시도하였다. CAS는 지필기법을 대신하는 데 그치지 않고, 실수의 소수표현과 대수적 표현, 수감각과 함수의 성질, 여러 표상의 연결성 등 대수통찰에 주목하게 하는 등 CAS의 가능성과 억제력은 대수교육에서 인식론적 변화와 교육과정 변화를 초래하는 것으로 나타났다.

  • PDF

깊이의 식과 토르 게임에 대하여 (On Depth Formula and Tor Game)

  • 최상기
    • 한국수학사학회지
    • /
    • 제17권4호
    • /
    • pp.37-44
    • /
    • 2004
  • 힐베르트 시지지 정리와 그에 따른 분해에서 호몰로지 대수의 흔적을 찾을 수 있다. 1950년대에 이르러 대수 위상의 발달과 함께 그의 이론적인 도구로서 호몰로지 대수의 실질적인 시작을 볼 수 있다. 1956년 쎄레는 정칙 국소환의 대역적 차원이 유한하다는 것을 증명하였는데, 이 정리는 호모로지 대수적인 문제 풀이에서 근본적인 도구를 제공하고 있다. 호모로지 대수에서 토르를 구하고 그의 깊이를 계산하는 것은 어려운 문제인데, 이 논문에서는 1961년 오슬랜더가 제시한 토르 가군의 깊이에 관한 문제와 그에 따른 토르 게임(Tor game)에 대하여 논하고자 한다.

  • PDF

모바일 선형대수학 스마트폰 콘텐츠 개발과 활용 (Development of smart-phone contents for mobile linear algebra)

  • 김경원;이상구
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제27권2호
    • /
    • pp.121-134
    • /
    • 2013
  • 대학 수학교육에서 선형대수학은 가장 중요한 과목 중 하나이다. 21세기 향상된 정보 기술이 선형대수학 수업에 적용된다면, 학생들의 선형대수학 내용에 대한 이해는 한층 더 향상될 것이다. 우리는 학생들의 관심을 높이고 보다 효율적으로 학습 목표에 도달하는데 기여하고자 웹상의 무료 수학 프로그램인 'Sage'(http://sagemath.org)를 활용한 교수학습 환경을 구축하고 그 콘텐츠를 개발하였다. 특히, 2009년 저자는 PC 환경 외에 휴대폰의 인터넷 기능을 통하여 Sage 명령어를 사용할 수 있는 단순모듈 콘텐츠를 개발하였다. 본 논문에서는 스마트폰을 이용하여 대부분의 Sage 기능을 활용할 수 있도록 개발한 모바일 Sage를 소개하고, 학생들의 자기주도적인 선형대수학 학습을 위해 개발한 모바일 선형대수학 스마트폰 콘텐츠(강의록, 동영상강의, 문제와 풀이, 공학적 도구)를 소개한다.

학교수학에서의 대수적 구조 지도에 대한 소고 (A study on the teaching of algebraic structures in school algebra)

  • 김성준
    • 한국학교수학회논문집
    • /
    • 제8권3호
    • /
    • pp.367-382
    • /
    • 2005
  • 본 연구는 학교수학에서 대수적 구조(군)의 지도에 관한 논의를 담고 있다. 이를 위해 먼저 Bruner가 제시한 지식의 구조에 대해 논의하고, 그 내용을 학교대수의 지도와 관련지어 살펴본다. 또한 대수적 구조 가운데 군 개념을 중심으로 하여 이와 관련된 선행연구를 Piaget, Freudenthal, Dubinsky, Burn 등의 논의에서 검토해본다. 그리고 초등수학에서부터 고등학교 수학까지 군 개념과 관련된 내용이 어떻게 표현되고 있는지를 살펴본다. 학교수학에서 군 개념과 관련된 내용은 초등수학에서부터 시작되는데, 초등수학의 경우 항등원, 교환법칙, 결합법칙 등을 수의 맥락에서 찾아볼 수 있다. 중학교 수학에서는 덧셈과 곱셈 연산에 있어서 항등원, 역원, 교환법칙, 결합법칙이 보다 구체적으로 제시되고 있으며, 이러한 규칙은 등식의 성질과 이항, 일차방정식의 풀이 등을 통해 살펴볼 수 있다. 고등학교 수학에서는 이항연산을 비롯한 여러 영역에서 군 개념을 포함하는 대수적 구조가 제시되고 있다. 이에 비해 학교대수에서는 이러한 주제들을 통합적으로 구성하려는 시도가 이루어지지 않고 있으며 각각의 내용이 독립적으로 다루어지고 있다. 본 연구에서는 학교대수에서 군 개념과 관련된 내용들을 검토함으로써 대수적구조(군) 측면에서 이러한 내용들을 종합해보고자 한다.

  • PDF

미지수가 2개인 연립일차부등식의 문제해결과정에서 발생하는 오류 분석 및 지도방안 연구 (On the analysis and correction of error for the simultaneous inequality with two unknown quantities)

  • 전영배;노은환;김대의;정찬식;김창수;강정기;정상태
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제24권3호
    • /
    • pp.543-562
    • /
    • 2010
  • 본 연구는 미지수가 2개인 연립 부등식을 해결하는 과정에서 발생하는 오류에 대해 분석하고 오류에 따른 교수-방법을 제공하는데 그 목적이 있다. 먼저, 미지수가 2개인 연립 부등식을 소개하고, 연구자가 지도하고 있는 한 학생이 제안한 풀이를 보여준다. 미지수가 2개인 연립 부등식의 문제를 해결하는 과정에서 학생은 오류를 범하고 있는데, 본 연구에서는 이러한 오류에 대해 해석기하적 접근(xy-평면에서의 오류진단, ab-평면에서의 오류진단), 대수적 접근, 공리적 접근의 방법으로 오류를 진단하고 적절한 지도방법을 모색하고자 한다. 학생이 문제를 해결하는 과정에서 범한 오류는 미지수가 2개인 연립일차부등식의 내용을 학습하기 전에 배우게 되는 내용 중 '8-가 단계'에서 학습하는 미지수가 2개인 연립 일차방정식의 내용이 미지수가 2개인 연립일차부동식의 내용과 유사한 점이 많기 때문에 미지수가 2개인 연립일차부동식과 관련된 문제를 해결하는 과정에서 미지수가 2개인 연립일차방정식을 학습하면서 익힌 풀이 방법이 같은 방법으로 적용될 것이라는 오개념과 미지수가 2개인 연립일차부등식과 관련된 불충분한 내용의 교육과정 때문에 발생한 것이다. 학생이 범한 오류에 대해 학생의 문제 풀이 과정을 해석기하적, 대수적 접근을 통해 면밀히 분석한 결과 학생이 범한 오류는 미지수가 2개인 연립일차부등식을 해결하는 과정에서 2개의 변수들 사이의 상호관련성을 간과하여 발생한 결과임을 알 수 있다. 따라서 본 연구는 오류를 범하기 쉬운 마지수가 2개인 연립일차부등식과 관련된 문제를 해결하는 과정에서 2개의 변수 사이의 관련성에 대해 해석기하적 접근, 대수적 접근, 공리적 접근을 통하여 2개의 변수들 사이의 상호관련성에 대해 학생들에게 주지시켜야 하고 아울러 미지수가 2개인 연립일차부등식을 다룰 경우 대수적 기법이 변수들 사이의 관련성으로 인하여 조심스러워야 하므로 해석기하적으로 좌표평면을 도입하여 문제에 접근해야함을 강조한다.

수학교사의 갈루아 이론 이해를 위한 자립연수자료 개발 (A Development of Self Learning Material for Mathematics Teachers' Understanding Galois Theory)

  • 신현용
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제31권3호
    • /
    • pp.279-290
    • /
    • 2017
  • 본 연구는 교사양성 과정에서 갈루아 이론에 관련된 군, 체, 벡터공간 등 대수적 구조를 배운 바 있으나 그러한 구조가 다항식의 가해성, 더 나아가 학교수학과 어떻게 관련되는지를 명확하게 이해하지 못하는 경우 자립 연수를 통해 이를 극복할 수 있는 자료를 개발하여 제시한다. 여기서 말하는 자립 연수에서는 교사 스스로 연수를 주도하지만 연수 도중 적절한 방법을 통하여 한두 차례 전문가의 도움을 받는다. 이 글에서 두 표현 '다항식 f(x)의 풀이'와 '방정식 f(x)=0의 풀이'는 같은 의미이고 '교사'는 현직 수학교사를 뜻한다.

분수의 나눗셈에 대한 대수적 사고 기반 수업이 문제해결에 미치는 영향 (The effect of algebraic thinking-based instruction on problem solving in fraction division)

  • 박서연;장혜원
    • 한국수학교육학회지시리즈C:초등수학교육
    • /
    • 제27권3호
    • /
    • pp.281-301
    • /
    • 2024
  • 대수는 방정식의 풀이로 해석되는 전통적인 관점에 따라 초등 현장에서 명시적으로 다루어지지 못하는 한계가 있지만, 초등 수준의 발달 단계에 맞춰 수의 체계와 원리, 산술적 사고의 확장인 대수적 사고로서 학습되어야 한다고 주장되어왔다. 본 연구에서는 초등학교 6학년 학생들에게 분수의 나눗셈에 대한 대수적 사고 기반 수업을 실시하고 문제해결력에 미치는 영향을 분석하였다. 학생들은 11차시의 수업에서 제수와 피제수의 관계 탐구를 통해 해결 방법을 일반화하고 특정한 분수의 나눗셈 문제에서 나아가 모든 경우에 적용할 수 있는 표현을 탐색하였다. 연구 결과 대수적 사고를 기반으로 한 수학 수업이 분수의 나눗셈 문제해결력에 긍정적인 영향을 미치는 것을 확인할 수 있었다. 학생들의 해결 과정에서는 기호화, 일반화, 추론, 정당화의 대수적 사고 요소가 나타났으며 다양한 수학적 아이디어와 구조를 발견하고 이를 활용해 문제를 해결하는 특징을 보였다. 연구 결과를 바탕으로 초등학생에게 초기 대수 지도를 위한 시사점을 도출하였다.