본 연구는 중학교 1학년을 대상으로 일차방정식의 풀이 과정에서 나타나는 오류를 분석하고 그래핑 계산기를 활용하여 오류의 교정 과정을 제시하였다. 오류의 유형을 개념적 이해 미흡 오류, 등식의 성질에 대한 오류, 이항에 대한 오류, 계산 착오로 인한 오류, 기호화에 의한 오류로 분류하였으며, 이 중에서 등식의 성질에 대한 오류와 개념적 이해 미흡으로 인한 오류를 많이 범하고 있었다. 학생들이 TI-92를 활용하여 일차방정식의 해를 구할 때, Home Mode에서 Solve 기능을 이용하여 단순히 결과만을 보는 것 보다 Symbolic Math Guide를 이용하여 풀이 과정을 선택하여 대수적 알고리즘을 형성하면서 해를 구하는 것을 선호하였다. 그리고 학생들의 정의적 및 기능적 측면을 고려해야 할 필요성을 느끼게 되었다.
Wassily Leontief가 미국 경제의 모델에 선형 대수를 적용한 이론으로 1973년에 노벨 경제학상을 받은 후로는 인문${\cdot}$사회 과학(특히 상경(商經) 분야)을 전공하는 사람에게도 선형 대수는 큰 관심 분야가 되었다. 그래서 1980년대 부터는 대학의 기초 과목으로써 선형 대수를 가르치는 것은 유행처럼 퍼졌고 또 가르침에 관한 연구도 활발하여졌다. 현행 우리나라의 초${\cdot}$중${\cdot}$고등 학교의 수학과 교육과정(이른바 “제 7차 개정”) 속에는 선형대수의 내용이 어느 정도 있으나 학생들에게 확실한 개념을 갖도록 가르치고 있지 않다. 수직선, 순서 쌍, n-겹수, 직교 좌표, 벡터 등 해석기하적인 내용과 선형 방정식계의 풀이법(가우스${\cdot}$조르단 소거법을 쓰지 않는 풀이법) 등 일반 대수적인 내용은 다루지만 선형 변환, 벡터 공간의 구조 등은 다루지 않는다. m${\sim}$n 행렬은 수학II에 나와 있긴 하나 소개하는 정도에 그친다. 한편 과학 계열 고등학교 학생을 위한 "고급 수학"에는 비교적 많은 양의 선형 대수의 내용이 있다. 일반 계열 고등학교의 수학에서도 선형 대수의 내용을 확장하고 학생들에게 확실한 개념을 갖도록 가르쳐서 이들이 대학에 진학하여 전공 분야에서 아무 어려움이 없도록 하는 것이 바람직하다.
This study is a study to collect information about 'Limitations of functions' related learning. Especially, this study was conducted on three students who can find answers by algebraic procedure in the process of extreme problem solving. Students have had the experience of converting from their algebraic procedures to graphical expressions. This shows how they reflect on their algebraic procedures. This study is a study that observes these parts. To accomplish this, twelfth were teaching experiment in three high school students. And we analyzed the contents related to the research topic of this study. Through this, students showed the difference of expressions in the method of finding limits by using algebraic interpretation methods and graphs. In addition, we examined the connectivity of the limitations of functions problem solving process of functions using algebraic procedures and graphs in the process of converting algebraic expressions to graph expressions. This study is a study of how students construct limit concepts. As in this study, it is meaningful to accumulate practical information about students' limit conceptual composition. We hope that this study will help students to study limit concept development process for students who have no limit learning experience in the future.
본 연구는 중등학교에서 CAS도입을 대비한 기초연구로 CAS 환경에서 모델링 문제해결 과정과 CAS 활용방식을 조사하였다. 수학교육과정 배경과 CAS 장착 정도가 문제해결과정과 CAS 사용전략에 변인이 될 가능성을 고려하여 비교연구로 수행하였으며 한 미 고등학교 2학년생 각 8명과 26명이 연구에 참여하였다. 연구결과 고전적 상자문제에서 CAS는 기호조작명령어와 그래프로 문제해결에 도움이 되었으나 수학적 개념이나 통찰을 대신하지 않았으며, 수학적 모델의 분석과 풀이, 결과 적용과 해석, CAS사용에 있어서 집단간 질적인 차이를 보였다. 수업을 통해 CAS 장착이 비교적 안정된 미국학생들 다수가, 한국 학생들과 대조적으로, 중간값 정리를 적용하여 해의 범위를 추정하는데 CAS를 사용하였으며 여러 표상의 연결을 시도하였다. CAS는 지필기법을 대신하는 데 그치지 않고, 실수의 소수표현과 대수적 표현, 수감각과 함수의 성질, 여러 표상의 연결성 등 대수통찰에 주목하게 하는 등 CAS의 가능성과 억제력은 대수교육에서 인식론적 변화와 교육과정 변화를 초래하는 것으로 나타났다.
힐베르트 시지지 정리와 그에 따른 분해에서 호몰로지 대수의 흔적을 찾을 수 있다. 1950년대에 이르러 대수 위상의 발달과 함께 그의 이론적인 도구로서 호몰로지 대수의 실질적인 시작을 볼 수 있다. 1956년 쎄레는 정칙 국소환의 대역적 차원이 유한하다는 것을 증명하였는데, 이 정리는 호모로지 대수적인 문제 풀이에서 근본적인 도구를 제공하고 있다. 호모로지 대수에서 토르를 구하고 그의 깊이를 계산하는 것은 어려운 문제인데, 이 논문에서는 1961년 오슬랜더가 제시한 토르 가군의 깊이에 관한 문제와 그에 따른 토르 게임(Tor game)에 대하여 논하고자 한다.
대학 수학교육에서 선형대수학은 가장 중요한 과목 중 하나이다. 21세기 향상된 정보 기술이 선형대수학 수업에 적용된다면, 학생들의 선형대수학 내용에 대한 이해는 한층 더 향상될 것이다. 우리는 학생들의 관심을 높이고 보다 효율적으로 학습 목표에 도달하는데 기여하고자 웹상의 무료 수학 프로그램인 'Sage'(http://sagemath.org)를 활용한 교수학습 환경을 구축하고 그 콘텐츠를 개발하였다. 특히, 2009년 저자는 PC 환경 외에 휴대폰의 인터넷 기능을 통하여 Sage 명령어를 사용할 수 있는 단순모듈 콘텐츠를 개발하였다. 본 논문에서는 스마트폰을 이용하여 대부분의 Sage 기능을 활용할 수 있도록 개발한 모바일 Sage를 소개하고, 학생들의 자기주도적인 선형대수학 학습을 위해 개발한 모바일 선형대수학 스마트폰 콘텐츠(강의록, 동영상강의, 문제와 풀이, 공학적 도구)를 소개한다.
본 연구는 학교수학에서 대수적 구조(군)의 지도에 관한 논의를 담고 있다. 이를 위해 먼저 Bruner가 제시한 지식의 구조에 대해 논의하고, 그 내용을 학교대수의 지도와 관련지어 살펴본다. 또한 대수적 구조 가운데 군 개념을 중심으로 하여 이와 관련된 선행연구를 Piaget, Freudenthal, Dubinsky, Burn 등의 논의에서 검토해본다. 그리고 초등수학에서부터 고등학교 수학까지 군 개념과 관련된 내용이 어떻게 표현되고 있는지를 살펴본다. 학교수학에서 군 개념과 관련된 내용은 초등수학에서부터 시작되는데, 초등수학의 경우 항등원, 교환법칙, 결합법칙 등을 수의 맥락에서 찾아볼 수 있다. 중학교 수학에서는 덧셈과 곱셈 연산에 있어서 항등원, 역원, 교환법칙, 결합법칙이 보다 구체적으로 제시되고 있으며, 이러한 규칙은 등식의 성질과 이항, 일차방정식의 풀이 등을 통해 살펴볼 수 있다. 고등학교 수학에서는 이항연산을 비롯한 여러 영역에서 군 개념을 포함하는 대수적 구조가 제시되고 있다. 이에 비해 학교대수에서는 이러한 주제들을 통합적으로 구성하려는 시도가 이루어지지 않고 있으며 각각의 내용이 독립적으로 다루어지고 있다. 본 연구에서는 학교대수에서 군 개념과 관련된 내용들을 검토함으로써 대수적구조(군) 측면에서 이러한 내용들을 종합해보고자 한다.
본 연구는 미지수가 2개인 연립 부등식을 해결하는 과정에서 발생하는 오류에 대해 분석하고 오류에 따른 교수-방법을 제공하는데 그 목적이 있다. 먼저, 미지수가 2개인 연립 부등식을 소개하고, 연구자가 지도하고 있는 한 학생이 제안한 풀이를 보여준다. 미지수가 2개인 연립 부등식의 문제를 해결하는 과정에서 학생은 오류를 범하고 있는데, 본 연구에서는 이러한 오류에 대해 해석기하적 접근(xy-평면에서의 오류진단, ab-평면에서의 오류진단), 대수적 접근, 공리적 접근의 방법으로 오류를 진단하고 적절한 지도방법을 모색하고자 한다. 학생이 문제를 해결하는 과정에서 범한 오류는 미지수가 2개인 연립일차부등식의 내용을 학습하기 전에 배우게 되는 내용 중 '8-가 단계'에서 학습하는 미지수가 2개인 연립 일차방정식의 내용이 미지수가 2개인 연립일차부동식의 내용과 유사한 점이 많기 때문에 미지수가 2개인 연립일차부동식과 관련된 문제를 해결하는 과정에서 미지수가 2개인 연립일차방정식을 학습하면서 익힌 풀이 방법이 같은 방법으로 적용될 것이라는 오개념과 미지수가 2개인 연립일차부등식과 관련된 불충분한 내용의 교육과정 때문에 발생한 것이다. 학생이 범한 오류에 대해 학생의 문제 풀이 과정을 해석기하적, 대수적 접근을 통해 면밀히 분석한 결과 학생이 범한 오류는 미지수가 2개인 연립일차부등식을 해결하는 과정에서 2개의 변수들 사이의 상호관련성을 간과하여 발생한 결과임을 알 수 있다. 따라서 본 연구는 오류를 범하기 쉬운 마지수가 2개인 연립일차부등식과 관련된 문제를 해결하는 과정에서 2개의 변수 사이의 관련성에 대해 해석기하적 접근, 대수적 접근, 공리적 접근을 통하여 2개의 변수들 사이의 상호관련성에 대해 학생들에게 주지시켜야 하고 아울러 미지수가 2개인 연립일차부등식을 다룰 경우 대수적 기법이 변수들 사이의 관련성으로 인하여 조심스러워야 하므로 해석기하적으로 좌표평면을 도입하여 문제에 접근해야함을 강조한다.
본 연구는 교사양성 과정에서 갈루아 이론에 관련된 군, 체, 벡터공간 등 대수적 구조를 배운 바 있으나 그러한 구조가 다항식의 가해성, 더 나아가 학교수학과 어떻게 관련되는지를 명확하게 이해하지 못하는 경우 자립 연수를 통해 이를 극복할 수 있는 자료를 개발하여 제시한다. 여기서 말하는 자립 연수에서는 교사 스스로 연수를 주도하지만 연수 도중 적절한 방법을 통하여 한두 차례 전문가의 도움을 받는다. 이 글에서 두 표현 '다항식 f(x)의 풀이'와 '방정식 f(x)=0의 풀이'는 같은 의미이고 '교사'는 현직 수학교사를 뜻한다.
대수는 방정식의 풀이로 해석되는 전통적인 관점에 따라 초등 현장에서 명시적으로 다루어지지 못하는 한계가 있지만, 초등 수준의 발달 단계에 맞춰 수의 체계와 원리, 산술적 사고의 확장인 대수적 사고로서 학습되어야 한다고 주장되어왔다. 본 연구에서는 초등학교 6학년 학생들에게 분수의 나눗셈에 대한 대수적 사고 기반 수업을 실시하고 문제해결력에 미치는 영향을 분석하였다. 학생들은 11차시의 수업에서 제수와 피제수의 관계 탐구를 통해 해결 방법을 일반화하고 특정한 분수의 나눗셈 문제에서 나아가 모든 경우에 적용할 수 있는 표현을 탐색하였다. 연구 결과 대수적 사고를 기반으로 한 수학 수업이 분수의 나눗셈 문제해결력에 긍정적인 영향을 미치는 것을 확인할 수 있었다. 학생들의 해결 과정에서는 기호화, 일반화, 추론, 정당화의 대수적 사고 요소가 나타났으며 다양한 수학적 아이디어와 구조를 발견하고 이를 활용해 문제를 해결하는 특징을 보였다. 연구 결과를 바탕으로 초등학생에게 초기 대수 지도를 위한 시사점을 도출하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.