• Title/Summary/Keyword: 대사화합물

Search Result 275, Processing Time 0.026 seconds

Inhibition of Drug-metabolizing Enzyme and Drug Transporter by Major Components of Phellodendri cortex (황백의 주요 구성 화합물에 의한 약물대사효소 및 약물수송단백 저해능 평가)

  • Ku, Hei-Young;Kim, Hyunmi;Shon, Ji-Hong;Liu, Kwang-Hyeon
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.1 no.3
    • /
    • pp.213-217
    • /
    • 2006
  • We evaluated the potential of major components of Phellodendri cortex to inhibit the activities of CYP2D6 and p-glycoprotein. The abilities of berberine, palmatine, limonin, and rutaecarpine to inhibit CYP2D6-mediated dextromethorphan O-demethylation and calcein AM accumulation were tested using human liver microsomes and L-MDR1 cell, respectively. Berberine strongly inhibited CYP2D6 isoform activity, whereas limonin and reuaecarpine did not. The $IC_{50}$ value of berberine was reduced after preincubation with microsomes in the presence of NADPH generating system, suggesting that berberine is a mechanism based inhibitor. In addition, all chemicals tested, didn't show inhibitory effect on p-glycoprotein activity. These results suggest that berberine has potential to inhibit CYP2D6 activity in vitro. Therefore, in vivo studies investigating the interactions between berberine and CYP2D6 substrates are necessary to determine whether inhibition of CYP2D6 activity by berberine is clinically relevant.

  • PDF

The Roles of Lactic Acid Bacteria for Control of Fungal Growth and Mycotoxins (곰팡이 생육 및 곰팡이 독소 생산의 억제에 있어서의 유산균의 역할)

  • Kim, Jihoo;Lee, Heeseob
    • Journal of Life Science
    • /
    • v.30 no.12
    • /
    • pp.1128-1139
    • /
    • 2020
  • Over recent years, it has become evident that food and agricultural products are easily contaminated by fungi of Aspergillus, Fusarium, and Penicillium due to rapid climate change, which is not only a global food quality concern but also a serious health concern. Owing to consumers' interest in health, resistance to preservatives such as propionic acid and sorbic acid (which have been used in the past) is increasing, so it is necessary to develop a substitute from natural materials. In this review, the role of lactic acid bacteria as a biological method for controlling the growth and toxin production of fungi was examined. According to recent studies, lactic acid bacteria effectively inhibit the growth of fungi through various metabolites such as organic acids with low molecular weight, reuterin, proteinaceous compounds, hydroxy fatty acids, and phenol compounds. Lactic acid bacteria effectively reduced mycotoxin production by fungi via adsorption of mycotoxin with lactic acid bacteria cell surface components, degradation of fungal mycotoxin, and inhibition of mycotoxin production. Lactic acid bacteria could be regarded as a potential anti-fungal and anti-mycotoxigenic material in the prevention of fungal contamination of food and agricultural products because lactic acid bacteria produce various kinds of potent metabolic compounds with anti-fungal activities.

Development of Natural Alkaloid-feed Additive for Enhancing Yield Grade of Hanwoo Steers (거세한우 육량향상을 위한 알칼로이드계열 천연물 이용 사료첨가제 개발)

  • Dong Hun Kang;Bo Hye Park;Sun Sik Jang;Ki Yong Chung
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.26 no.2
    • /
    • pp.31-40
    • /
    • 2024
  • This study was indicated that both potato leaves and stems contained certain amount of alkaloids compounds which digested in the rumen of Hanwoo steers. Three candidate plant byproducts such as potato, tomato, and eggplant were collected and dried for making feed additives. Among the candidate byproducts, potato extract was contained 2.05±0.27mg/g of α-chaconine and 0.60±0.08mg/g of α-solanine. These glycoalkaloids was potentially activated as functional compounds to skeletal muscle in beef cattle. However, tomato and eggplant byproducts were not detected any alkaloids compounds. After potato byproducts collected and dried for 24 hours, dry matter of potato byproduct were used as feeding study for evaluating active dose titrations. For evaluating dietary rate of rumen microbes, potato dry matter were treated with in situ hybridization for 72 hours using annulated Hanwoo steers. The glycoalkaloids contained potato dry matter were digested until 12 hours after treatment. Blood concentration of glycoalkaloids were not detected after 24 hours treatment of potato dry matter. These data indicated that potato byproduct were digested with rumen microbes for 24 hours after treatments.

Utilization of [6]-gingerol as an origin discriminant marker influencing melanin inhibitory activity relative to its content in Pinellia ternata (반하(Pinellia ternata)에서의 [6]-gingerol 함량과 멜라닌 저해 활성에 영향을 미치는 원산지 판별 마커로의 활용)

  • An, Ju Hyeon;Won, Hyo Jun;Seo, Soo-Kyung;Kim, Doo-Young;Ku, Chang-Sub;Oh, Sei-Ryang;Ryu, Hyung Won
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.4
    • /
    • pp.323-330
    • /
    • 2016
  • Pinellia ternata Breitenbach, the natural medicinal plant of the Araceae family, is a perennial plant originated from the East Asia, but also widely distributed in Europe and North America. Its tuber is used as traditional medicine for treatment of various diseases such as vomiting, inflammation, and traumatic injury. Pharmacological studies revealed that P. ternata possesses anticonvulsant, anti-tumor, insecticidal, and cytotoxic activities. Despite being well-known as the useful medicinal plant, there is no reliable, standardized method for origin discrimination. Ultra performance liquid chromatography-photodiode array detector and quadrupole time of flight-mass spectrometry based metabolite-profiling was applied to explore significant metabolite for origin discrimination between Korean and Chinese P. ternata. One compound was isolated from Korean P. ternata using repeated ODS column chromatography by bioactivity guided fractionation, and determined as [6]-gingerol according to the results of spectroscopic data including nuclear magnetic resonance and MS. This compound was selected as cosmeceutical biomarker by fingerprints, and it was associated to melanin inhibitory effect determining its origin authenticity. Furthermore, the calibration curve of biomarker was prepared using validated method for the comparison of content between Korean and Chinese P. ternata. This is the report to address the selection and successful validation of the discriminant metabolite for confirmation of Korean P. ternata.

Seasonal Variations in the Concentration of Persistent Organochlorine Pesticides in Atmosphere (대기중 난분해성 유기염소계 농약의 계절별 농도변화)

  • Chung, Rye-Pyo;Choi, Min-Kyu;Yeo, Hyun-Gu;Chun, Man-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.2
    • /
    • pp.79-85
    • /
    • 2001
  • From July to November 1999, air samples were collected from Ansung, Korea, to identify the seasonal variation in organochlorine pesticides(OCPs). OCPs maximum(mean) concentrations were as follows: heptachlor, $14.0\;pg/m^3(3.6\;pg/m^3)$; heptachlor epoxide, $28.7\;pg/m^3(11.7\;pg/m^3)$; DDE, $40.6\;pg/m^3(20.6\;pg/m^3)$; endosulfan sulfate, $98.9\;pg/m^3(36.6\;pg/m^3)$. The higher concentration of the locally and seasonally used pesticide endosulfan[1759.2 $pg/m^3(453.4\;pg/m^3)$] was found. The concentrations of all OCPs were higher in summer than those in fall. This pattern suggests that the concentrations may be increased by evaporation from surfaces(soil, water, vegetation, etc) with increasing the temperature and by much usage in growing season, particularly in summer, for endosulfan.

  • PDF

Activities of Antioxidation and Alcohol Dehydrogenase Inhibition of Methanol Extracts from Some Medicinal Herbs (약용식물 추출물에 대한 항산화성과 알코올 탈수소효소 저해성 연구)

  • 문지숙;김선재;박윤미;황인식;김의형;박정욱;박인배;김상욱;강성국
    • Food Science and Preservation
    • /
    • v.11 no.2
    • /
    • pp.201-206
    • /
    • 2004
  • The activities of antioxidation and alcohol dehydrogenase in hibitionin methanol extracts of thirty two medical herbs were tested using the method of DPPH activity, nitrite scavenging effect and alcohol dehydrogenase assay in vitro. In DPPH method, Eugenia caryophyllata, Thea sinensis, Paeonia suffruticosa, Alnus japonica showed over 90 % of free radical scavenging activities. The nitrite scavenging ability appeared Zanthoxylum bungeanum, Alnus japonica, Thea sinensis, Hovenia dulcis(cortex) and Illicium verum showed the high value. In connection with in vivo alcohol metabolism, thirteen medicinal herbs were screened for inhibition. As a reasult, we found significant inhibition of ADH by methanolic extracts of Glycyrrhiza uralensis, Pueraria thunbergiana(radix), Alnus japonica. These results indicate that the antioxidative effect was strongly related with alcohol dehydrogenase inhibitor; Thea sinensis and Alnus japonica.

Association between cancer metabolism and muscle atrophy (암 대사와 근위축의 연관성)

  • Yeonju Seo;Ju-Ock Nam
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.387-396
    • /
    • 2022
  • Skeletal muscle accounts for about 40-50% of body weight and is an important tissue that performs various functions, such as maintaining posture, supporting soft tissues, maintaining body temperature, and respiration. Cancer, which occurs widely around the world, causes cancer cachexia accompanied by muscular atrophy, which reduces the effectiveness of anticancer drugs and greatly reduces the quality of life and survival rate of cancer patients. Therefore, research to improve cancer cachexia is ongoing. However, there are few studies on the link between cancer and muscle atrophy. Cancer cells exhibit distinct microenvironment and metabolism from tumor cells, including tumor-associated macrophages (TAM), tumor-associated neutrophils (TAN), and insulin resistance due to the Warburg effect. Therefore, we summarize the microenvironment and metabolic characteristics of cancer cells, and the molecular mechanisms of muscle atrophy that can be affected by cytokine and insulin resistance. In addition, this suggests the possibility of improving cancer cachexia of substances affecting TAM, TAN, and Warburg effect. We also summarize the mechanisms identified so far through single agents and the signaling pathways mediated by them that may ameliorate cancer cachexia.

Mechanisms Regulating the Expression of Cytochrome P450 (CYP) Enzymes Involved in Xenobiotic Metabolism (외인성 화학물질의 대사에 관여하는 Cytochrome P450 (CYP) 효소의 발현조절 기전)

  • Gyesik Min
    • Journal of Life Science
    • /
    • v.34 no.3
    • /
    • pp.199-207
    • /
    • 2024
  • Cytochrome P450s (CYP) enzymes play a central role in the metabolism of both endogenous and xenobiotic chemical compounds. In particular, therapeutic drugs, natural products and environmental toxicants regulate expression of the tissue-specific CYP enzymes, This can cause CYP-mediated interactions among the chemical compounds such as the ingested drugs and toxicants, resulting in changes in their metabolism. This can lead to the modifications of their therapeutic and toxic effects. Intense investigations in this field throughout the last several decades have resulted in considerable progress in understanding the molecular mechanisms mediating the regulation of CYP gene expression. Now, it is well established that xenobiotic chemicals regulate the expression of specific CYP genes, and the corresponding xenobiotic-sensing receptors that mediate the expression control of specific CYP genes and their signal transduction pathways are involved in this process. This review summarizes the molecular mechanisms by which the well-known major xenobiotic-sensing receptors and other regulators affect the induction of CYP gene expression in response to exposure to various chemicals.

Epimers/Metabolites of Tetracycline Derivatives; Biological Activity and Regulation Aspects for MRL in Food (생물학적활성을 기초로 한 테트라싸이클린계 항생물질 잔류스크리닝법의 개선과 식품 중 잔류허용기준 설정 개선)

  • Kwon, Jin-Wook;Yun, Hyo-In;Lee, Kyu-Seung
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.1
    • /
    • pp.82-88
    • /
    • 2011
  • BACKGROUND: Tetracyclines (TCs) are mainly regulated as parent compounds by bioactivity-based screening methods in food. Especially with respect to antimicrobial residues, their metabolites/epimers are also highly concerning chemicals and traditionally applied microbial detection methods are needed to improve with validation for regulatory control. METHODS AND RESULTS: Detection capability and biological activity of tetracycline (TC), chlortetracycline (CTC), oxytetracycline (OTC) and their epimers; anhydrotetracycline (ATC), epianhydrotetracycline (EATC), epitetracycline (ETC), 4-epi-chlortetracycline (ECTC), 4-epianydrochlotetra-cycline (EACTC), 4-epioxychlortetracycline (EOTC), were measured by microbial growth inhibition screening method of Korea Food Code. CONCLUSION(S): Limited detection capabilities were found, B. megarerium and B. subtilis showed for TC and CTC, and B. subtilis for OTC. Biological potency of each epimer was also presented against various microorganisms, at the level from 50% to 96%, comparing with parent TCs. It is recommended that more advanced microbial screening methods with validation are needed, and biologically active epimers are to be considered as marker residues for MRL setting of regulatory control purpose.

Effect of Substrate Size on Activities of Thiocarbamides with the Human Flavin-containing Monooxygenase 3 (사람 Flavin-containing Monooxygenase 3의 Thiocarbamide 화합물의 기질 크기에 따른 효소활성에 관한 연구)

  • 김영미
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.2
    • /
    • pp.97-102
    • /
    • 2001
  • The flavin-containing monooxygenases(FMOs) (EC1.14.13.8) are NADPH0dependent flavoenzymes that catalyze oxidation of soft nucleophilic heteroatom centers in a range of structurally diverse compounds, including foods, drugs, pesticides, and other xenobiotics. In humans, FMO3 is quantitatively a major human liver monooxygenase. In the present study, the baculovirus expression vector system was used to overexpress human FMO3 in sect cells for stalytic studies. Microsomes isolated from Spodoptera frugiperda(Sf)9 cells infected with human FMO3 recombinant baculovirus catalyzed the NADPH-and O$_2$-dependent oxidation of methimazole, thiourea, and phenylthiourea. However there was no detectable activity with 1, 3-diphenylthiourea or larger thiocarbamides. Microsomes from control Sf9 cells were devoid of methimazole or thiourea S-oxygenase activity. 1, 3-diphenylthiourea is apparently completely excluded from the catalytic site, these amines drugs are probably approaching the upper size limits of xenobiotics accepted by human FMO3. The substrate specificity of this iosform in humans appears considerably more restriceted than that of pig, guinea pig, rat or rabbit FMO3.

  • PDF