• Title/Summary/Keyword: 대비 향상

Search Result 2,320, Processing Time 0.026 seconds

The Enhancement Scheme of the Image Contrast Using the Improvement of Local Contrast (지역 명암 대비 향상을 통한 영상의 명암대비 개선 기법)

  • Kim, Gwang-Hyeon;Han, Yeong-Jun;Han, Heon-Su
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.139-142
    • /
    • 2007
  • 본 논문은 지역 명암대비 향상을 통한 영상의 명암대비 개선 기법을 제안한다. 전역 대비 향상 기법은 영상 전체를 고려하여 대비를 향상시키므로 영상의 특성에 따라 영상이 뿌옇게 되거나 원하지 않는 인공적인 산물이 생성될 수 있다. 그리고 지역 대비 향상 기법은 블록화 및 영상의 화질이 훼손되는 문제점이 있다. 제안하는 기법은 다양한 블록 크기를 사용하여 지역 대비를 향상시켜 지역 대비가 가장 많이 향상된 영상의 히스토그램 평활화 함수를 이용하여 전체 영상의 명암대비를 향상시키는 방법을 제안한다. 명암대비가 낮은 다양한 영상의 실험을 통해서 제안하는 명암대비 향상 기법의 우수성을 입증하였다.

  • PDF

A Method of Histogram Compression Equalization for Image Contrast Enhancement (명암대비 향상을 위한 히스토그램 압축 평활화 기법)

  • Kim, Jong-in;Lee, Jae-Won;Honga, Sung-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.05a
    • /
    • pp.346-349
    • /
    • 2013
  • 화질향상에 큰 영향을 주는 요소 중의 하나는 명암대비 향상이다. 영상의 명암대비를 향상시키는 대표적인 방법으로 히스토그램 평활화(Histogram Equalization) 방법이 있으며, 히스토그램 평활화의 변형된 방법에 대한 다양한 연구가 이루어지고 있다. 그러나 기존의 방법들은 평균 밝기의 급격한 변화로 인하여 부자연스러운 결과영상을 얻거나, 대비 향상 효과가 낮은 결과를 얻는 단점이 종종 발생한다. 본 논문에서는 히스토그램 압축방법을 통해서 개선된 명암대비 향상 기법을 제안한다. 제안한 방법은 과도한 명암대비 증가로 인한 과포화 현상을 억제하기 위하여 히스토그램의 빈도수에 따라 히스토그램을 차등 압축시키도록 설계되어 있다. 실험결과 제안방법은 기존 방법에 비해 과포화 현상 없이 좋은 명암대비 향상 효과를 보였다.

Global Contrast Enhancement Using Block based Local Contrast Improvement (블록기반 지역 명암대비 개선을 통한 전역 명암대비 향상 기법)

  • Kim, Kwang-Hyun;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.45 no.1
    • /
    • pp.15-24
    • /
    • 2008
  • This paper proposes a scheme of global image contrast enhancement using local contrast improvement. Methods of global image contrast enhancement redistribute the image gray level distribution using histogram equalization without considering image properties, and cause the result image to include image pixels with excessive brightness. On the other hand, methods of the block-based local image contrast enhancement have blocking artifacts and a problem of eliminating important image features during an image process to reduce them. In order to solve these problems, the proposed method executes the block-based histogram equalization on temporary images that an input image is divided into various fixed-size blocks. And then it performs the global contrast enhancement by applying the global histogram equalization functions to the original input image. Since the proposed method selects the best histogram equalization function from temporary images that are improved by the block-based local image contrast enhancement, it has the advantages of both the local and global image contrast enhancement approaches.

Automatic Threshold Selection and Contrast Intensification Technique for Image Enhancement (영상 향상을 위한 자동 임계점 선택 및 대비 강화 기법)

  • Lee, Geum-Boon;Cho, Beom-Joon
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.4
    • /
    • pp.462-470
    • /
    • 2008
  • This study applies fuzzy functions to improve image quality under the assumption that uncertainty of image information due to low contrast is based on vagueness and ambiguity of the brightness pixel values. To solve the problem of low contrast images whose brightness distribution is inclined, we use the k-means algorithm as a parameter of the fuzzy function, through which automatic critical points can be found to differentiate objects from background and contrast between bright and dark points can be improved. The fuzzy function is presented at the three main stages presented to improve image quality: fuzzification, contrast enhancement and defuzzification. To measure improved image quality, we present the fuzzy index and entropy index and in comparison with those of histogram equalization technique, it shows outstanding performance.

  • PDF

Cognitive Contrast Enhancement of Image Using Adaptive Parameter Based on Non-Linear Masking (비선형 마스킹 기법 기반의 적응적 파라미터를 이용한 영상의 인지적 대비 향상)

  • Kim, Kyoung-Su;Kim, Jong-Sung;Lee, Cheol-Hee
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.11
    • /
    • pp.1365-1372
    • /
    • 2011
  • This paper proposes a cognitive contrast enhancement algorithm based on the non-linear masking to advance low cognitive contrast in dark regions of images. In order to improve brightness in dark regions of an image, we propose a new contrast enhancement algorithm based on the non-linear masking using regional adaptive parameters of an image. For performance evaluation of the proposed method, chromaticity and saturation comparison as a quantitative assessment and z-score comparison as a qualitative assessment were executed between test images and their simulated images by SSR, MSR, a conventional non-linear masking and the proposed method, respectively. As a result, the proposed method showed low chromaticity and saturation difference and improved cognitive contrast for the three methods.

An Image Contrast Enhancement Technique Using the Improved Integrated Adaptive Fuzzy Clustering Model (개선된 IAFC 모델을 이용한 영상 대비 향상 기법)

  • 이금분;김용수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.9
    • /
    • pp.777-781
    • /
    • 2001
  • This paper presents an image contrast enhancement technique for improving the low contrast images using the improved IAFC(Integrated Adaptive Fuzzy Clustering) model. The low pictorial information of a low contrast image is due to the vagueness or fuzziness of the multivalued levels of brightness rather than randomness. Fuzzy image processing has three main stages, namely, image fuzzification, modification of membership values, and image defuzzification. Using a new model of automatic crossover point selection, optimal crossover point is selected automatically. The problem of crossover point selection can be considered as the two-category classification problem. The improved IAFC model is used to classify the image into two classes. The proposed method is applied to several experimental images with 256 gray levels and the results are compared with those of the histogram equalization technique. We utilized the index of fuzziness as a measure of image quality. The results show that the proposed method is better than the histogram equalization technique.

  • PDF

Contrast Enhancement Algorithm Using Singular Value Decomposition and Image Pyramid (특이값 분해와 영상 피라미드를 이용한 대비 향상 알고리듬)

  • Ha, Changwoo;Choi, Changryoul;Jeong, Jechang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.11
    • /
    • pp.928-937
    • /
    • 2013
  • This paper presents a novel contrast enhancement method based on singular value decomposition and image pyramid. The proposed method consists mainly of four steps. The proposed algorithm firstly decomposes image into band-pass images, including basis image and detail images, to improve both the global contrast and the local detail. In the global contrast process, singular value decomposition is used for contrast enhancement; the local detail scheme uses weighting factors. In the final image composition process, the proposed algorithm combines color and luminance components in order to preserve the color consistency. Experimental results show that the proposed algorithm improves contrast performance and enhances detail compared to conventional methods.

A Contrast Enhancement Method using the Contrast Measure in the Laplacian Pyramid for Digital Mammogram (디지털 맘모그램을 위한 라플라시안 피라미드에서 대비 척도를 이용한 대비 향상 방법)

  • Jeon, Geum-Sang;Lee, Won-Chang;Kim, Sang-Hee
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.2
    • /
    • pp.24-29
    • /
    • 2014
  • Digital mammography is the most common technique for the early detection of breast cancer. To diagnose the breast cancer in early stages and treat efficiently, many image enhancement methods have been developed. This paper presents a multi-scale contrast enhancement method in the Laplacian pyramid for the digital mammogram. The proposed method decomposes the image into the contrast measures by the Gaussian and Laplacian pyramid, and the pyramid coefficients of decomposed multi-resolution image are defined as the frequency limited local contrast measures by the ratio of high frequency components and low frequency components. The decomposed pyramid coefficients are modified by the contrast measure for enhancing the contrast, and the final enhanced image is obtained by the composition process of the pyramid using the modified coefficients. The proposed method is compared with other existing methods, and demonstrated to have quantitatively good performance in the contrast measure algorithm.

Image Enhancement using Intensity Deviation of Boundary Regions (경계 영역의 밝기 편차를 이용한 영상의 화질 향상 기법)

  • Hwang, Jae-Min;Kwon, Oh-Seol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.140-149
    • /
    • 2014
  • Image enhancement has become an important area of study with the recent development of hi-fidelity devices, such as UHD displays. While conventional methods are able to enhance the image contrast and detail, this sometimes results in contrast reversion in boundary region. Therefore, this paper proposes the use of multi-layers and intensity deviation in boundary areas to enhance the perceived image quality. First, the image contrast of individual blocks is enhanced using multi-layers with different sizes. After calculating the block boundaries, weights are then determined based on the intensity deviation and used to enhance the image detail. Experiments with several test images confirm that the proposed algorithm is superior that image contrast and detail to conventional methods.

A Image Contrast Enhancement Technique by Histogram Distribution Alteration Using Clustering Algorithm (클러스터링 알고리듬을 이용한 히스토그램 변경에 의한 영상 대비 향상 기법)

  • 김남진;김용수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09b
    • /
    • pp.177-180
    • /
    • 2003
  • 텔레비젼 카메라, 비디콘 카메라(vidicon camera), 디지털 검지기, 스캐너 등 물리적 장치로 획득한 영상은 주위의 밝기로 인하여 어두운 영상을 얻거나 영상장치의 물리적 속성과 영상 전송에 기인하여 영상은 열악한 대비를 가질 수 있다. 본 논문에서는 획득한 저대비 영상을 대비 향상시켜주는 기법을 제안한다. 제안된 기법은 K-means 알고리듬을 사용하여 교차점을 자동으로 선정하는 방법을 사용한다. 이 최적의 교차점을 선정하는 과정은 획득한 영상을 물체와 배경으로 분리하는 두 개의 클래스 문제로 보고 K-means 알고리듬을 적용하였다. 구한 교차점을 사용하여 영상을 양분하여 히스토그램 평활화 방법을 적용하였다. 본 논문에서는 퍼지성 지수(index of fuzziness)를 사용하여 향상의 정도를 측정하였다. 제안된 기법을 저대비 영상에 적용하였으며 그 결과를 히스토그램 평활화 기법의 결과와 비교하였다.

  • PDF