• Title/Summary/Keyword: 단일 겹침 체결

Search Result 9, Processing Time 0.021 seconds

An Experimental Study on the Strength of Composite-to-Aluminum Hybrid Single-Lap Joints (복합재-알루미늄 단일겹침 하이브리드 체결부 강도 특성 실험 연구)

  • Kim, Jung-Jin;Seong, Myeong-Su;Kim, Hong-Joo;Cha, Bong-Keun;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.841-850
    • /
    • 2008
  • Strength and failure of composite-to-aluminum rivetted, bonded, and rivet/bonding hybrid single-lap joints were investigated by experiment. A total of 82 joint specimens were tested with 3 different overlap lengths and 2 types of stacking sequence. FM73m adhesive film and NAS9308-4-03 rivet were used for hybrid joints. While failure loads of the bonded and hybrid joints increased as the overlap length increased, failure loads of the rivetted joints were not affected by the overlap length. Effect of the stacking sequence was not remarkable in the simple bonded or rivetted joints. Failure loads of the hybrid joints, however, showed the maximum of 30% difference depending on the stacking sequence. Major failure mode of the bonded and hybrid joints was the delamination of the composite adherend and failure mode of riveted joints was the rivet failure with local bearing.

Failure Characteristics of Scarf Patch-repaired Composite Single-lap Joints (스카프 패치로 수리한 복합재 단일겹침 체결부의 파손 특성 연구)

  • Kim, Choong-Hyun;Yoo, Jae-Seung;Byeon, Chang-Seok;Ju, Hyun-Woo;Park, Min-Young;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.29 no.3
    • /
    • pp.117-124
    • /
    • 2016
  • The failure strength of composite single-lap joint repaired using scarf patch was investigated by test and finite element method. A total of 45 specimens were tested changing scarf ratio, stacking pattern, and defect size to study the failure strength and mode. Except for one case, all repaired specimens showed the equal or higher strength than the sound specimens and the effect of considered repair parameters was not remarkable. It was found through the failure mode inspection that the surface treatment for bonding was not enough in the case which failed at the lower load than the sound specimen. Three-dimensional finite element analysis was conducted to verify the test results. It was confirmed that the considered repair parameters do not significantly affect the stress distribution of the specimens. It was also observed that the applied tensile load is relieved passing through the overlapped region thickness of which is almost double. From this study, it is concluded that if the bonding procedure for adherends and patch including surface treatment for fabric layer is thoroughly followed, the strength of repaired single-lap joint can be restored up to the strength of sound one.

An Experimental Study on the Strength of Single-Lap Bonded Joints of Carbon Composite and Aluminum (탄소 복합재와 알루미늄 이종재료 단일겹침 접착 체결부의 강도에 관한 실험 연구)

  • Kim, Tae-Hwan;Lee, Chang-Jae;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.204-211
    • /
    • 2007
  • Experiments were conducted to investigate the failure and strengths of carbon composite-to-aluminum single-lap bonded joints with 5 different bonding lengths. Joint specimens were fabricated to have secondary bonding of laminate and aluminum with a film type adhesive, FM73m. Tested joints have the bonding strengths between the values of aluminum-to-aluminum joints and composite-to-composite joints. In the joints with bonding length-to-width ratio smaller than 1, the strength decreases as the bonding length increases. In the joints with the ratio larger than 1, however, the strength converges to a constant value. Final failure mode of all the specimens was delamination. To use the maximum strength of the adhesive, it is important to design the joint to have strong resistance to delamination.

Strength of Composite Single-Lap Bonded Joints with Various Manufacturing Processes for Aircraft Application (항공용 복합재 단일겹침 접착 체결부의 제작공정에 따른 강도 연구)

  • Song, Min-Gyu;Kweon, Jin-Hwe;Choi, Jin-Ho;Kim, Hyo-Jin;Song, Min-Hwan;Shin, Sang-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.8
    • /
    • pp.751-758
    • /
    • 2009
  • Failure strengths of composite single-lap adhesive joints were investigated with various parameters such as manufacturing method, overlap length and adherend thickness. A total of 335 single-lap joint specimens were tested under tension. Specimens were fabricated with 4 different manufacturing processes; cocuring without and with adhesive, secondary bonding and co-bonding. Each manufacturing process has 5 different overlap lengths and 4 different thicknesses, respectively. As expected, failure strength is higher in thicker adherend joints and lower in larger overlap length specimens. Interesting result is that the secondary bonded joints show the higher strength than the cobonded and cocured joints with adhesive, and give close or even higher strength compared with non-adhesive cocured case.

A Parametric Study on the Strength of Single-Lap Bonded Joints of Carbon Composite and Aluminum (탄소 복합재-알루미늄 단일겹침 접착 체결부의 강도에 관한 인자연구)

  • Kim, Tae-Hwan;Seong, Myeong-Su;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.34-42
    • /
    • 2007
  • Strength and failure of adhesively bonded carbon composite-to-aluminum single-lap joints were studied by experiment. The main objective of this study is to investigate the effect of various parameters such as curing pressure for bonding, overlap lengths, and adherend thickness on the failure loads and modes of the bonded Joints with dissimilar materials. Experimental results show that the bonding pressure for composite-to-aluminum dissimilar materials should be 4 atm at the lowest. Failure load of the joints increases as the overlap length increases, but the strength (failure load divided by bonded area) decreases rapidly after the overlap width-to-length ratio is greater than 1. When the adherend thickness increase to double, bonding strength increase $12{\sim}55%$. Major failure mode of the joints is the delamination in the composite laminate and the location of delamination goes deeper into the laminates as the bonding pressure and overlap length increase.

A Study on Stress Concentration Factor of Composite Laminate Mechanical Joints (복합재료 적층판 기계적 체결부 응력집중계수에 대한 고찰)

  • Kwon, Jeong-Sik;Kim, Jin-Sung;Lee, Soo-Yong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.3
    • /
    • pp.194-200
    • /
    • 2013
  • In this paper, the results of composite laminate mechanical joints test(ASTM D5961) are compared with the theoretical strength calculations and FEM analysis results. To calculate the S.C.F.(stress concentration factor) on joint strength, equations on metallic and composite materials in ASM Handbook used and compared with experimental results. The difference of joint strength are compared by geometrical parameters and joining types(single/double lap joint). In FEM analysis, to find efficient FEM model on composite laminate mechanical joint, several FEM models are compared with experimental test results.

Strength of Stainless Steel Pin-reinforced Composite Single-lap Joints (금속 핀으로 보강된 복합재 단일겹침 체결부의 강도 연구)

  • Lee, Byeong-Hee;Park, Yong-Bin;Kweon, Jin-Hwe;Choi, Jin-Ho;Choi, Ik-Hyeon;Chang, Sung-Tae
    • Composites Research
    • /
    • v.25 no.3
    • /
    • pp.65-69
    • /
    • 2012
  • The main objective of this study is to investigate the effect of metal z-pinning on the failure behavior of cocured composite single-lap joints. Three different pin diameters (0.3, 0.5, and 0.7 mm) and three pin areal densities (0.5, 2.0, and 4.0%) were examined. The specimens were fabricated by T700-12K-31E#2510 unidirectional prepreg from Toray. Stainless steel pins were used for z-pinning. Test results showed that except one case with extremely low pin density of 0.5%, all other z-pinned joints exhibited lower initial crack stresses than those of the unpinned joint. However the ultimate strength of the z-pinned joint increased up to 45% at most. Furthermore, even after the complete failure of the joint, the z-pins sustained the carried load to a certain degree experiencing large deformation and provided the stable fracture behavior for the composite joint.

Strength of Composit Single-lap Bonded Joints with Different Saltwater Moisture Contents (서로 다른 수분율을 갖도록 염수환경에 노출된 복합재 접착체결부의 강도)

  • Yang, Hyeon-Jeong;Jeong, Mun-Gyu;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.24 no.4
    • /
    • pp.48-54
    • /
    • 2011
  • The effect of moisture contents by salt water on the strength of composite single-lap bonded joints is investigated. The specimens were manufactured in an autoclave by secondary bonding and immersed in the 3.5% salt water of $71^{\circ}C$ for different durations to get various moisture contents; 0, 0.2, 0.5, 1.0, and 2.0%(saturation). A total of 80 joint specimens were tested for 5 different moisture contents and 2 temperature environments. Test results show that while the joint strengths after the saturation of moisture decrease compared to those of dry ones, the strengths of the pre-saturated joint up to 1.0% of moisture content increase in both room and elevated temperature conditions. It is also shown that the strengths of joints tested in elevated temperature are slightly higher than the strength in room temperature by 2-5% until the moisture content reaches 1 %. In contrast, the high temperature strength of the saturated joint is about 5% lower than the room temperature strength.

Strength of sandwich-to-laminate single-lap bonded joints in elevated temperature and wet condition (샌드위치와 적층판을 접착한 단일겹침 체결부의 고온습도 강도특성 연구)

  • Choi, Bae-Hyun;Kweon, Jin-Hwe;Choi, Jin-Ho;Shin, Sang-Jun;Song, Min-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1115-1122
    • /
    • 2010
  • The main objective of this study is to experimentally investigate the effect of adhesive thickness and environmental conditions on the failure and strength of sandwich-to-laminate bonded joints. Three different adhesive thicknesses (t=0.2, 2 and 4 mm) and two different environmental conditions were considered. Environmental conditions include the RTD(room temperature and dry condition) and ETW(elevated temperature and wet condition). Test results show as the adhesive thickness increases from 0.2 mm to 2 and 4 mm, the joint strength decreases 16 and 30%, respectively. Regarding the effect of environmental conditions, except for one case, the joint strength in the ETW conditions turned out to be 12% higher than those in the RTD conditions. In the joints with adhesive thickness of 0.2 mm, remarkable difference from RTD condition was not found.