DOI QR코드

DOI QR Code

Strength of sandwich-to-laminate single-lap bonded joints in elevated temperature and wet condition

샌드위치와 적층판을 접착한 단일겹침 체결부의 고온습도 강도특성 연구

  • 최배현 (경상대학교 대학원 항공우주공학과) ;
  • 권진회 (경상대학교 기계항공공학부) ;
  • 최진호 (경상대학교 기계항공공학부) ;
  • 신상준 (한국항공우주산업(주)) ;
  • 송민환 (한국항공우주산업(주))
  • Received : 2010.05.03
  • Accepted : 2010.10.13
  • Published : 2010.11.01

Abstract

The main objective of this study is to experimentally investigate the effect of adhesive thickness and environmental conditions on the failure and strength of sandwich-to-laminate bonded joints. Three different adhesive thicknesses (t=0.2, 2 and 4 mm) and two different environmental conditions were considered. Environmental conditions include the RTD(room temperature and dry condition) and ETW(elevated temperature and wet condition). Test results show as the adhesive thickness increases from 0.2 mm to 2 and 4 mm, the joint strength decreases 16 and 30%, respectively. Regarding the effect of environmental conditions, except for one case, the joint strength in the ETW conditions turned out to be 12% higher than those in the RTD conditions. In the joints with adhesive thickness of 0.2 mm, remarkable difference from RTD condition was not found.

본 논문에서는 샌드위치-적층판 단일겹침 접착 조인트의 정적강도를 시험을 통해 연구하였다. 접착제의 두께(3종류 : 0.2, 2, 4 mm)와 환경조건(2가지 : 상온, 고온흡습)을 변화시키면서 총 38개의 시편을 제작하여 시험을 수행하였다. 시험 결과, 접착제의 두께가 0.2mm에서 2 mm 와 4 mm로 증가함에 따라 체결부의 파손강도가 각각 16% 와 30% 정도 감소하는 것으로 나타났다. 반면 고온흡습 환경에서의 파손강도는, 접착제의 두께가 0.2mm인 경우를 제외하면, 접착제의 열화현상이 적층판과 샌드위치 면재의 층간분리 혹은 층내분리 파손을 지연시켜, 상온건조 환경에 비해 약 12% 가량 높게 나타났다. 접착제의 두께가 얇은 0.2 mm의 경우 시험환경의 효과는 나타나지 않았다.

Keywords

References

  1. Petrie, E. M., "Adhesives for the assembly of aircraft structures and components : Decades of performance improvement, with the new applications of the horizon", Metal Finishing, Vol. 106, 2008, pp. 26-31. https://doi.org/10.1016/S0026-0576(08)80035-9
  2. Pereira, A. M., Ferreira, J. M., Antunes, P. J., “Analysis of manufacturing parameters on the shear strength of aluminium adhesive single-lap joints”, Jounal of Materials Processing Technology, Vol. 210, 2001, pp. 610-617. https://doi.org/10.1016/j.jmatprotec.2009.11.006
  3. Kahraman, R., Sunar, M., Yilbas, B., “Influence of adhesive thickness and filler content on the mechanical performance of aluminum single-lap joints bonded with aluminum powder filled epoxy adhesive”, Journal of Materials Processing Technology, Vol. 205, 2008, pp. 183-189. https://doi.org/10.1016/j.jmatprotec.2007.11.121
  4. Liljedahl, C. D. M., Crocombe, A. D., Wahab, M. A., Ashcroft, I. A., “Modelling the environmental degradation of adhesively bonded aluminium and composite joints using a CZM approach”, International Journal of Adhesion and Adhesives, Vol. 27, 2007, pp. 505-518. https://doi.org/10.1016/j.ijadhadh.2006.09.015
  5. Seong, M. S., Kim, T. H., Nguyen, K. H., Kweon, J. H., Choi, J. H., “A parametric study on the failure of bonded single-lap joints of carbon composite and aluminum”, Composite Structures, Vol. 86, 2008, pp. 135-145. https://doi.org/10.1016/j.compstruct.2008.03.026
  6. Li, G., Pang, S. S., Woldesenbet, E., Stubblefield, M. A., Mensah, P. E., Ibekwe, S. I., "Investigation of prepreg bonded composite single lap joint", Composites: Part B Engineering, Vol. 32, 2001, pp. 651-658. https://doi.org/10.1016/S1359-8368(01)00045-2
  7. Avila, A. F., Bueno, P. O., "An experimental and numerical study on adhesive joints for composites", Composite Structures, Vol. 64, 2004, pp. 531-537. https://doi.org/10.1016/j.compstruct.2003.09.052
  8. 김광수, 유재석, 안재모, “일방향 복합재료 Single Lap 접착 조인트의 파손 모드 및 강도I. 실험”, 복합재료학회지, Vol. 17, 2004, pp. 14-21.
  9. 이영무, 김천곤, 김광수, “일방향 복합재료 Single Lap 접착 조인트의 파손 모드 및 파손 강도 II. 파손 예측”, 복합재료학회지, Vol. 18, 2005, pp. 1-9.
  10. Kweon, J. H., Jung, J. W., Kim, T. H., Choi, J. H., “Failure of carbon composite-toaluminum joints with combined mechanical fastening and adhesive bonding”, Composite Structures, Vol. 75, 2006, pp. 192-198. https://doi.org/10.1016/j.compstruct.2006.04.013
  11. Park, S. W., Kim, H. S., Lee, D. G., “Optimum design of the co-cured double lap joint composed of aluminum and carbon epoxy composite”, Composite Structures, Vol. 75, 2006, pp. 289-297. https://doi.org/10.1016/j.compstruct.2006.04.031
  12. 송민규, 권진회, 최진호, 김효진, 송민환, 신상준, “항공용 복합재 단일겹침 접착 체결부의 제작공정에 따른 강도 연구”, 한국항공우주학회지, 제37권 제8호, 2009, pp. 751-758.
  13. Delasi, R., Whiteside, J. B., “Effect of moisture on epoxy resins and composites”, Advanced composite materials-environmental effects, ASTM STP No. 658, Philadelpha, U.S.A., 1978, pp. 2-20.
  14. Ishai, O., Arnon, U., “Instantaneous effect of internal moisture conditions on strength of glass-fiber-reinforced plastics”, Advanced composite materials-environmental effects, ASTM STP 569, Philadelphia, U.S.A., 1978, pp. 267-276.
  15. Zhou, J., Lucas, J. P., “The effects of a water environment on anomalous absorption behavior in graphite/epoxy composites”, Composites Science and Technology, Vol. 53, 1995, pp. 57-64. https://doi.org/10.1016/0266-3538(94)00078-6
  16. Liao, K., Schultheisz, C. R., Hunston, D. L., “Effects of environmental aging on the properties of pultruded GFRP”, Composite: Part B, Vol. 30, 1999, pp. 485-493. https://doi.org/10.1016/S1359-8368(99)00013-X
  17. Walker, S. P., “Thermal effect on the compressive behavior of IM7/PET15 Laminates”, Journal of Composite materials, Vol. 38, 2004, pp. 264-278.
  18. Parker, B. M., “Some effects of moisture on adhesive-bonded CFRP-CFRP joints”, Composite Structures, Vol. 6, 1986, pp. 123-139. https://doi.org/10.1016/0263-8223(86)90073-5
  19. Parker, B. M., “The strength of bonded carbon fibre composite joints exposed to high humidity”, International Jounal of Adhension and Adhesives, Vol. 10, 1990, pp. 187-191. https://doi.org/10.1016/0143-7496(90)90102-4
  20. Ashcroft, I. A., Hughes, D. J., Shaw, S. J., "Adhesive bonding of fiber reinforced polymer composite materials", Assembly Automation, Vol. 20, 2000, pp. 150-161. https://doi.org/10.1108/01445150010321797
  21. 송민규, 권진회, 최진호, 김효진, 송민환, 신상준, 변재원, "고온습도 및 저온 환경이 복합재 접착 체결부 강도에 미치는 영향 연구", 한국항공우주학회지, 제38권, 제2호, 2010, pp. 119-128.
  22. Corigliano, A., Rizzi, E., Papa, E., “Experimental characterization and numerical simulations of a syntactic-foam/glass-fibre composite sandwich” Composites Science and Technology, Vol. 60, 2000, pp. 2169-2180. https://doi.org/10.1016/S0266-3538(00)00118-4
  23. Song, K. L., Choi, J. Y., Kweon, J. H., "An experimental study of the insert joint strength of composite sandwich structures", Composite Structures, Vol. 86, 2008, pp. 107-113. https://doi.org/10.1016/j.compstruct.2008.03.027
  24. Kim, J. B., Lee, D. G., “Characteristics of joining inserts for composite sandwich panels”, Composite Structures, Vol. 86, 2008, pp. 55-60. https://doi.org/10.1016/j.compstruct.2008.03.020
  25. Xia, F., Wu, X. Q., “Study on impact properties of through-thickness stitched foam sandwich composites”, Composite Structures, Vol. 92, 2010, pp. 412-421. https://doi.org/10.1016/j.compstruct.2009.08.016
  26. ASTM D5868-01, "Standard Test Method for Lap Shear Adhesion for Fiber Reinforced Plastic (FRP) Bonding".
  27. ASTM D5229, "Standard Test Method for Moisture Absorption Properties and Equilibrium Conditioning of Polymer Matrix Composite Materials".
  28. AGATE WP3.3-033051-134, "Advanced General Aviation Transport Experiments".
  29. ASTM D3983-98, "Standard Test Method for Measuring Strength and Shear Modulus of Nonrigid Adhesives by the Thick-Adherend Tensile-Lap Specimen".
  30. Baley, C., Davies, P., Grohens, Y., Dolto, G., "Application of Interlaminar Tests to Marine Composites. A Literature Review", Applied composite materials, Vol. 11, 2004, pp. 99-126. https://doi.org/10.1023/B:ACMA.0000012902.93986.bf

Cited by

  1. An Experimental Study on the Failure of a Novel Composite Sandwich Structure vol.29, pp.4, 2016, https://doi.org/10.7234/composres.2016.29.4.209