DOI QR코드

DOI QR Code

Strength of Stainless Steel Pin-reinforced Composite Single-lap Joints

금속 핀으로 보강된 복합재 단일겹침 체결부의 강도 연구

  • 이병희 (경상대학교 대학원 항공우주공학전공) ;
  • 박용빈 (경상대학교 대학원 항공우주공학전공) ;
  • 권진회 (경상대학교 항공우주시스템공학과, 항공기부품기술연구소) ;
  • 최진호 (경상대학교 기계공학부, 항공기부품기술연구소) ;
  • 최익현 (한국항공우주연구원) ;
  • 장성태 (경상대학교 항공기부품기술연구소)
  • Published : 2012.06.30

Abstract

The main objective of this study is to investigate the effect of metal z-pinning on the failure behavior of cocured composite single-lap joints. Three different pin diameters (0.3, 0.5, and 0.7 mm) and three pin areal densities (0.5, 2.0, and 4.0%) were examined. The specimens were fabricated by T700-12K-31E#2510 unidirectional prepreg from Toray. Stainless steel pins were used for z-pinning. Test results showed that except one case with extremely low pin density of 0.5%, all other z-pinned joints exhibited lower initial crack stresses than those of the unpinned joint. However the ultimate strength of the z-pinned joint increased up to 45% at most. Furthermore, even after the complete failure of the joint, the z-pins sustained the carried load to a certain degree experiencing large deformation and provided the stable fracture behavior for the composite joint.

본 논문에서는 금속 핀으로 보강된 일체성형 복합재 단일겹침 체결부에 대해, 보강 핀이 체결부의 파손거동에 미치는 영향을 시험으로 연구하였다. 핀의 지름(0.3, 0.5, 0.7 mm)과 밀도(0.5, 2.0, 4.0%)를 달리하여 총 6종류의 시편을 제작하였다. 복합재료와 보강핀은 각각 Toray사의 일방향 탄소-에폭시 프리프레그 T700-12K-31E#2510와 스테인리스 강이다. 핀 밀도가 매우 낮은 한 경우(0.5%)를 제외하고는, 모든 체결부에서 두께방향 핀의 보강으로 인해 초기균열의 발생이 더 빨라지는 것으로 나타났다. 그러나 극한강도는 최대 45%까지 증가하고, 특히 접착면의 완전한 분리 후에도 대변형 상태에서 핀이 추가적인 하중을 지지함으로써, 구조물이 안정적 파괴거동을 갖도록 하는 것을 확인하였다.

Keywords

References

  1. 김광수, 이영무, 김천곤, "일방향 복합재료 single lap 접합 조인트의 파손 강도 II," 복합재료학회지, 제18권 제1호, 2005, pp. 1-9.
  2. Kim, K.S., Yoo, J.S., Yi, Y.M., and Kim, C.G., "Failure mode and strength of uni-directional composite single-lap bonded joints with different bonding methods," Composite Structures, Vol. 72, No. 4, 2006, pp. 477-485. https://doi.org/10.1016/j.compstruct.2005.01.023
  3. 김태환, 성명수, 권진회, 최진호, "탄소 복합재-알루미늄 단일겹침 접착 체결부의 강도에 관한 인자연구," 한국복합재료학회지, 제20권 제5호, 2007, pp. 34-42.
  4. 김건희, 임도완, 최진호, 권진회, 이태주, 송민환, 신상준, "모자(Hat)형 보강재를 가진 복합재 패널의 제작과 평가," 한국복합재료학회지, 제23권 제2호, 2010, pp. 31-39.
  5. Shin, K.C., Lim, J.O., and Lee, J.J., "The manufacturing process of co-cured single and double lap joints and evaluation of the load-bearing capacities of co-cured joints," Journal of Materials Processing Technology, Vol. 138, No. 1-3, 2003, pp. 89-96. https://doi.org/10.1016/S0924-0136(03)00054-2
  6. Jones, R.M., Mechanics of Composite Materials, 2nd ed., Taylor & Framcis Inc., New York, 1999, pp. 417-422.
  7. Jain, L.K., and Mai, Y.W., "Determination of mode II delamination toughness of stitched laminated composites," Composites Science and Technology, Vol. 55, No. 3, 1995, pp. 241-253. https://doi.org/10.1016/0266-3538(95)00089-5
  8. Mouritz, A.P., and Cox, B.N., "A mechanistic approach to the properties of stitched laminates," Composites: Part A, Vol. 31, No. 1, 2000, pp. 1-27.
  9. Mouritz, A.P., Leong, K.H., and Herszberg, I., "A review of the effect of stitching on the in-plane mechanical properties of fibre-reinforced polymer composites," Composites: Part A, Vol. 28, No. 12, 1997, pp. 979-999. https://doi.org/10.1016/S1359-835X(97)00057-2
  10. Stickler, P.B., Ramulu, M., and Johnson, P.S., "Experimental and numerical analysis of transverse stitched T-joints in bending," Composite Structures, Vol. 50, No. 1, 2000, pp. 17-27. https://doi.org/10.1016/S0263-8223(00)00006-4
  11. Mouritz, A.P., "Review of z-pinned composite laminates," Composites: Part A, Vol. 38, No. 12, 2007, pp. 2383-2397. https://doi.org/10.1016/j.compositesa.2007.08.016
  12. ASTM D1002-01, "Standard test method for apparent shear strength of single-lap-joint adhesively bonded metal specimens by tension loading(metal-to-metal)".
  13. ASTM D5868-01, "Standard test method for lap shear adhesion for fiber reinforced plastic (FRP) bonding".

Cited by

  1. Interlaminar Fracture Toughness of Hybrid Composites Inserted with Different Kinds of Non-Woven Tissues : Part I-Mode I vol.37, pp.4, 2013, https://doi.org/10.3795/KSME-A.2013.37.4.497
  2. Interlaminar fracture toughness of CFRP laminates with silk fibers interleave vol.27, pp.12, 2013, https://doi.org/10.1007/s12206-013-0910-4
  3. Fatigue characteristics of stainless steel pin-reinforced composite hat joints vol.108, 2014, https://doi.org/10.1016/j.compstruct.2013.08.040
  4. Mode II Interlaminar Fracture Toughness of Hybrid Composites Inserted with Different Types of Non-woven Tissues vol.26, pp.2, 2013, https://doi.org/10.7234/composres.2013.26.2.141