• Title/Summary/Keyword: 단열교차

Search Result 32, Processing Time 0.031 seconds

Numerical Analysis of Flow Interference at Discontinuity Junction of fracture Network (단열교차점에서 유체간섭에 관한 수치적 고찰)

  • 박영진;이강근;이승구
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.4 no.3
    • /
    • pp.111-115
    • /
    • 1997
  • Discrete fracture model has become one of the alternatives for the classical continuum model to simulate the irregular aspects of the fluid flow and the solute transport in fractured rocks. It is based on the assumptions that the discharge in a single fracture is proportional to the cube of the aperture and the fractured rock can be represented by the statistical assemblage of such single fractures. This study is intended to evaluate the effect of the fracture junction on the cubic law. Numerical solution of flow in junction system was obtained by using the Boundary-Fitted Coordinate System (BFCS) method. Results with different intersection angles in crossing fractures show that the geometry of the junction affects the discharge pattern under the same simulation conditions. Therefore, strict numerical and experimental examinations on this subject are required.

  • PDF

The Relation of Fracture Properties to Hydraulic Conductivity in Volcanic Rocks of the Northern Yosu Area (여수 북부지역 화산암의 단열특성과 수리전도도와의 관계)

  • 조성일;송무영;김경수;이은용
    • The Journal of Engineering Geology
    • /
    • v.9 no.3
    • /
    • pp.227-241
    • /
    • 1999
  • Groundwater flow in a fractured rock mass is related to the geometric characteristics of the fracture system. The objective of this study aims to analyze the probabilistic density function of fracture properties md their relations to the hydraulic conductivity in volcanic rocks of the northern Yosu area. Fracture characteristics were investigated by core logging and acoustic televiewer logging in four boreholes and the hydraulic conductivity was obtained from the constant pressure injection and fall-off tests. The 303 fractures were grouped into three sets by their orientation and three fracture types by the degree of opening in aperture. As a result of the study, the hydraulic conductivity in the test section intersected by open and semi-open fractures, conductive fractures, and set 1 fractures was very high, while closed fractures did rarely affect the hydraulic conductivity. It was recognized that the hydraulic conductivity in a fractured rock mass was preferentially affected by the aperture size of conductive fractures and fracture intersection frequency and size, secondly.

  • PDF

Effect of Intersecting Angles of Rock Fractures on Solute Mixing at Fracture Junction (암반단열의 교차각이 교차점에서의 용질의 혼합에 미치는 영향)

  • Kim, Dahye;Yeo, In Wook
    • Economic and Environmental Geology
    • /
    • v.54 no.4
    • /
    • pp.465-473
    • /
    • 2021
  • This numerical study aims at analyzing the effect of flow characteristics, caused by geometrical features such as intersecting angles, on solute mixing at fracture junctions. It showed that not only Pe, the ratio of advection to diffusion, but also the intersecting angles played an important role in solute mixing at the junction. For the intersection angles less than 90°, the fluid flowed to the outlet in the same direction as the injected flow direction, which increased the contact at the junction with the streamlines coming from the different inlets. On the other hand, for the intersecting angles greater than 90°, the fluid flowed out to the outlet opposite to the flow direction in the inlet, leading to minimizing the contact at the junction. Therefore, in the former case, solute mixing occurred even at high Pe, and in the latter case, solutes transport along the streamlines even at low Pe. For Pe < 1, the complete mixing model was known to occur, but for the intersecting angle greater than 150°, no complete solute mixing occurred. Overall, the transition from the complete mixing model to the streamline-routing model occurred for Pe = 0.1 - 100, but it highly depended on the intersecting angles. Specifically, the transition occurred at Pe = 0.1 - 10 for intersecting angles ≧ 150° and at Pe = 10 - 100 for intersecting angles ≦ 30°. For Pe > 100, the streamline-routing model was dominant regardless of intersecting angles. For Pe > 1,000, the complete streamline-routing model appeared only for the intersecting angles greater than 150°. For the intersecting angles less than 150°, the streamline-routing model dominated over the complete solute mixing, but solute mixing still occurred at the fracture junction.

Interpretation of Subsurface Fracture Characteristics by Fracture Mapping and Geophysical Loggings (단열조사 및 물리검층을 통한 지표 하 단열특성 해석)

  • Chae, Byung-Gon;Lee, Dae-Ha;Kim, Yu-Sung;Hwang, Se-Ho;Kee, Weon-Seo;Kim, Won-Young;Lee, Seung-Gu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.37-56
    • /
    • 2001
  • As a preliminary study to establish fracture network model in crystalline rocks, detail investigation on fracture characteristics were performed. Five fracture sets were determined on the basis of regional survey of geological structures and fractures on outcrops. Among the fracture sets, S1 set has the highest density and longest trace length of fractures which was identified on surface in the study area. S4 and S5 sets are composed of foliations and foliation parallel shear joints of gneisses, which are very important sets at the aspect of weighting of fracture length. For characterization of subsurface fractures, detail core logging was performed to identify fractures and fracture zones from five boreholes. Acoustic televiewer logging and borehole geophysical loggings produced images, orientations and geophysical properties of fractures which intersect with boreholes. According to the result of the investigations, subsurface fractures can be grouped as three preferred orientations(B1, B2 and B3), which correspond to S1, S2 and S4/S5 of surface fracture sets, respectively. Actually, B1 set is expected to be intensely developed at subsurface. However, it has low frequency of intersection with boreholes due to its parallel or sub-parallel direction to boreholes. According to the inference of conductive fractures, B1 and B3 sets have possibilities of water flow and their intersection lines are also thought to consist of important conduits of groundwater flow. In particular, faults which are parallel to foliations control major groundwater flow in the study area.

  • PDF

A Study on the Constructing Discrete Fracture Network in Fractured-Porous Medium with Rectangular Grid (사각 격자를 이용한 단열-다공암반내 분리 단열망 구축기법에 대한 연구)

  • Han, Ji-Woong;Hwang, Yong-Soo;Kang, Chul-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 2006
  • For the accurate safety assessment of potential radioactive waste disposal site which is located in the crystalline rock it is important to simulate the mass transportation through engineered and natural barrier system precisely, characterized by porous and fractured media respectively. In this work the methods to construct discrete fracture network for the analysis of flow and mass transport through fractured-porous medium are described. The probability density function is adopted in generating fracture properties for the realistic representation of real fractured rock. In order to investigate the intersection between a porous and a fractured medium described by a 2 dimensional rectangular and a cuboid grid respectively, an additional imaginary fracture is adopted at the face of a porous medium intersected by a fracture. In order to construct large scale flow paths an effective method to find interconnected fractures and algorithms of swift detecting connectivities between fractures or porous medium and fractures are proposed. These methods are expected to contribute to the development of numerical program for the simulation of radioactive nuclide transport through fractured-porous medium from radioactive waste disposal site.

  • PDF

Verification on the Fracture Size Estimation Using Forward Modeling Approach (순산 모델링 기법을 이용한 단열크기 추정방법 고찰)

  • 김경수;김천수;배대석;정지곤
    • The Journal of Engineering Geology
    • /
    • v.8 no.1
    • /
    • pp.1-12
    • /
    • 1998
  • The fracture size among geometric parameters of the fracture system is treated as one of the most important factors in the geotechnical and hydrogeological analysis. However, several uncertainties in data acquisition and analysis pmcess about the fracture size are not clear yet. This study presents the current status on the estimation of the fracture size and verifies the estimating method using forward modeling approach. The factors considered are the variation of fracture intersection probabilities with different assumptions on the orientation of sampling planes and fracture size by using a simulated tleee dimensional fracture network model. If it is possible to analyze precisely the fracture intersection probabilities and the characteristics of probabilistic distnbution fiom cavern walls, outcrops or boreholes,the actual fracture size developed in rock rnass can be estimated confidently.

  • PDF

Joint Characteristics in Layered Rocks (층상 암석에서 절리의 특성 연구)

  • Chang, Tae-Woo
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.145-152
    • /
    • 2009
  • Joints are planar tensile opening-mode fractures whose relative motion, as the fracture propagates, is perpendicular to bedding plane and occur in a systematic manner to form a joint set. This paper discusses the mechanical control of joint propagation, the relationship between join spacing and layer thickness, the join saturation, the frequency distribution of join spacing, the joint density, the cross joint, and the development mechanism of joint from a lot of recent joint studies in sedimentary rocks.

An Evaluation of the Linear Thermal Transmittance for the Internal Insulation versus the External Insulation in Apartment Housings (공동주택의 단열형태별 선형열관류율 평가)

  • Lee, Jong-Sung;Lee, Do-Heun;Jun, Myoung-Hoon
    • Land and Housing Review
    • /
    • v.5 no.4
    • /
    • pp.315-323
    • /
    • 2014
  • In this study, thermal transmittance which is a parameter to measure the thermal performance was evaluated for an internal insulation versus an external insulation. Then the ISO regulation was applied to evaluate it, and the superiority of an external insulation was verified by the thermal transmittance values. The three zones of apartment housing were selected to evaluate the performance. (1) The junction of an outer wall and a protruded slab : If there is no a thermal bridge protection system, then the values are about same in the two insulation systems, so the protection system should certainly be installed. If it is installed, then the value for the external insulation is 2 times lower than internal system. (2) The junction of a side wall and a flat slab: The value is 0.509W/mK for the internal insulation and about zero for the external insulation. (3) The junction of an outer wall and a division wall: The value is 0.451W/mK for the internal insulation and also about zero for the external insulation. A domestic regulation that could evaluate a thermal transmittance has to be established by applying the ISO regulation for the evaluation of external insulation systems in apartment housing in the future. Additionally, the government must decide which length should be used for the national standard.

가을 환절기 농장관리 점검 - 부화율 향상을 위한 환절기 종계관리

  • Lee, Jae-Ui
    • KOREAN POULTRY JOURNAL
    • /
    • v.52 no.9
    • /
    • pp.142-144
    • /
    • 2020
  • 혹서기를 지나 환절기에 들어가면서 환절기 부화율 향상을 위한 종계 사양 관리에서 가장 큰 난점은 일교차에 따른 환기 관리와 여름을 지나면서 지쳐있던 수탉계군의 컨디션을 얼마나 잘 향상·유지하느냐에 있다. 이런한 난점을 해결하기 위해서는 단열과 적정 환기 등으로 계사 내의 온도 차를 줄이고 계사 내 환경을 쾌적하게 유지하며, 양질의 적절한 사료 관리와 체계화되고 주기적인 수탉 관리로 환절기 종계의 부화율 향상에 도움이 되었으면 한다.

  • PDF

Estimation of Conductivity Tensor of Fractured Rocks from Single-hole Packer test (단정 주입시험 결과를 이용한 단열암반의 수리전도도 분석)

  • 장근무;이은용;김창락;이찬구;김현주
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.13-25
    • /
    • 2000
  • A three-dimensional discrete fracture network model based on probabilistic characteristics of fracture geometry and transmissivity was designed to calculate the conductivity tensor and to estimate theanisotropy of conductivity. The conductivities, $K_p$, obtained from the numerical simulation of single-holepacker test corresponded well to those from the field tests. From this, it can be concluded that thefracture network model designed in this study can represent hydraulic characteristics of in-situ fractured rock mass. Block-scale conductivities, $K_b$, estimated from the modelling of steady-state flow through the REV-scale block were ranged between the arithmetic mean and harmonic mean of theconductivity estimates from packer tests. The conductivity along north-south direction was 1.4 timesgreater than that along the east-west direction. It was concluded that the anisotropy of conductivitywas insignificant. It was also found that there was a little correlation between $K_b$ and $K_p$. This would be to that the conductivities from the packer test simulation was strongly dependent on thetransmissivity and the number of fractures within the packer test intervals.

  • PDF