• Title/Summary/Keyword: 단어 정렬

Search Result 56, Processing Time 0.021 seconds

Analysis of preference convergence by analyzing search words for oralcare products : Using the Google trend (구강관리용품에 대한 검색어 분석을 통한 선호도 융합 분석 : 구글트렌드를 이용하여)

  • Moon, Kyung-Hui;Kim, Jang-Mi
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.59-64
    • /
    • 2019
  • This study used the Google Trends site to analyze selection information that users expect from prominent Toothbrushes and Toothpastes through related search keywords that users wanted to obtain. From 2006 to 2018(sep), searches for Toothbrushes and Toothpastes were arranged in the order of popularity of related searched words. The total number of searches words exposed was each 25, total 325 collected. The analysis was conducted using two methods, first, by search function. second, by a word network using a Big Data program. The study has shown that toothbrushes there are high expectations for brands, toothpaste there are high expectations in the function. In order to increase the motivation for oral health education, it is recommended to use and provide knowledge about the brand of toothbrushes and Toothpastes by the function.

A Phoneme-based Approximate String Searching System for Restricted Korean Character Input Environments (제한된 한글 입력환경을 위한 음소기반 근사 문자열 검색 시스템)

  • Yoon, Tai-Jin;Cho, Hwan-Gue;Chung, Woo-Keun
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.10
    • /
    • pp.788-801
    • /
    • 2010
  • Advancing of mobile device is remarkable, so the research on mobile input device is getting more important issue. There are lots of input devices such as keypad, QWERTY keypad, touch and speech recognizer, but they are not as convenient as typical keyboard-based desktop input devices so input strings usually contain many typing errors. These input errors are not trouble with communication among person, but it has very critical problem with searching in database, such as dictionary and address book, we can not obtain correct results. Especially, Hangeul has more than 10,000 different characters because one Hangeul character is made by combination of consonants and vowels, frequency of error is higher than English. Generally, suffix tree is the most widely used data structure to deal with errors of query, but it is not enough for variety errors. In this paper, we propose fast approximate Korean word searching system, which allows variety typing errors. This system includes several algorithms for applying general approximate string searching to Hangeul. And we present profanity filters by using proposed system. This system filters over than 90% of coined profanities.

Real-time Spatial Recommendation System based on Sentiment Analysis of Twitter (트위터의 감정 분석을 통한 실시간 장소 추천 시스템)

  • Oh, Pyeonghwa;Hwang, Byung-Yeon
    • The Journal of Society for e-Business Studies
    • /
    • v.21 no.3
    • /
    • pp.15-28
    • /
    • 2016
  • This paper proposes a system recommending spatial information what user wants with collecting and analyzing tweets around the user's location by using the GPS information acquired in mobile. This system has built an emotion dictionary and then derive the recommendation score of morphological analyzed tweets to provide not just simple information but recommendation through the emotion analysis information. The system also calculates distance between the recommended tweets and user's latitude-longitude coordinates and the results showed the close order. This paper evaluates the result of the emotion analysis in a total of 10 areas with two keyword 'Restaurants' and 'Performance.' In the result, the number of tweets containing the words positive or negative are 122 of the total 210. In addition, 65 tweets classified as positive or negative by analyzing emotions after a morphological analysis and only 46 tweets contained the meaning of the positive or negative actually. This result shows the system detected tweets containing the emotional element with recall of 38% and performed emotion analysis with precision of 71%.

Vocabulary Difference of South and North Korean English Textbook (남북한 영어교과서 어휘의 차이)

  • Kim, Jeong-ryeol
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.1
    • /
    • pp.107-116
    • /
    • 2020
  • This paper aims to explore the vocabulary difference between South and North Korean English textbooks as a first step toward a unified vocabulary list. To this end, both South and North Korean English textbooks in 2000s and 2010s are digitized into a corpus of text files, and a vocabulary list is constructed based on the corpus with reference to its concordances for the vocabulary use and contexts using AntConc 3.5.7. The vocabulary list of North Korean English textbooks are compared and found in their differences of quantity and quality of the English vocabulary in English education. Both quantitative and qualitative differences are found in between South and North Korean English textbook corpus. Both South and North aim that students learn about 3,000 words throughout the English education. North Korean English textbook contains more special academic vocabulary while South Korean English textbook is constrained by a strict vocabulary control which does not allow such a flexibility. Differences of vocabulary and their use are caused by the capitalistic market economy of South and the socialists' planned economy of North. Differences are also attributed to the religious words and grammatical vocabulary appearance.

Automatic Target Recognition Study using Knowledge Graph and Deep Learning Models for Text and Image data (지식 그래프와 딥러닝 모델 기반 텍스트와 이미지 데이터를 활용한 자동 표적 인식 방법 연구)

  • Kim, Jongmo;Lee, Jeongbin;Jeon, Hocheol;Sohn, Mye
    • Journal of Internet Computing and Services
    • /
    • v.23 no.5
    • /
    • pp.145-154
    • /
    • 2022
  • Automatic Target Recognition (ATR) technology is emerging as a core technology of Future Combat Systems (FCS). Conventional ATR is performed based on IMINT (image information) collected from the SAR sensor, and various image-based deep learning models are used. However, with the development of IT and sensing technology, even though data/information related to ATR is expanding to HUMINT (human information) and SIGINT (signal information), ATR still contains image oriented IMINT data only is being used. In complex and diversified battlefield situations, it is difficult to guarantee high-level ATR accuracy and generalization performance with image data alone. Therefore, we propose a knowledge graph-based ATR method that can utilize image and text data simultaneously in this paper. The main idea of the knowledge graph and deep model-based ATR method is to convert the ATR image and text into graphs according to the characteristics of each data, align it to the knowledge graph, and connect the heterogeneous ATR data through the knowledge graph. In order to convert the ATR image into a graph, an object-tag graph consisting of object tags as nodes is generated from the image by using the pre-trained image object recognition model and the vocabulary of the knowledge graph. On the other hand, the ATR text uses the pre-trained language model, TF-IDF, co-occurrence word graph, and the vocabulary of knowledge graph to generate a word graph composed of nodes with key vocabulary for the ATR. The generated two types of graphs are connected to the knowledge graph using the entity alignment model for improvement of the ATR performance from images and texts. To prove the superiority of the proposed method, 227 documents from web documents and 61,714 RDF triples from dbpedia were collected, and comparison experiments were performed on precision, recall, and f1-score in a perspective of the entity alignment..

Speech Recognition Using Linear Discriminant Analysis and Common Vector Extraction (선형 판별분석과 공통벡터 추출방법을 이용한 음성인식)

  • 남명우;노승용
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.35-41
    • /
    • 2001
  • This paper describes Linear Discriminant Analysis and common vector extraction for speech recognition. Voice signal contains psychological and physiological properties of the speaker as well as dialect differences, acoustical environment effects, and phase differences. For these reasons, the same word spelled out by different speakers can be very different heard. This property of speech signal make it very difficult to extract common properties in the same speech class (word or phoneme). Linear algebra method like BT (Karhunen-Loeve Transformation) is generally used for common properties extraction In the speech signals, but common vector extraction which is suggested by M. Bilginer et at. is used in this paper. The method of M. Bilginer et al. extracts the optimized common vector from the speech signals used for training. And it has 100% recognition accuracy in the trained data which is used for common vector extraction. In spite of these characteristics, the method has some drawback-we cannot use numbers of speech signal for training and the discriminant information among common vectors is not defined. This paper suggests advanced method which can reduce error rate by maximizing the discriminant information among common vectors. And novel method to normalize the size of common vector also added. The result shows improved performance of algorithm and better recognition accuracy of 2% than conventional method.

  • PDF