• Title/Summary/Keyword: 단어 의미 표현

Search Result 208, Processing Time 0.037 seconds

A Study on the Analysis of Emotion-expressing Vocabulary for Realtime Conversion of Avatar′s Countenances (아바타의 실시간 표정변환을 위한 감정 표현 어휘 분석에 관한 연구)

  • 이영희;정재욱
    • Archives of design research
    • /
    • v.17 no.2
    • /
    • pp.199-208
    • /
    • 2004
  • In cyberspace based on internet, users constitute communities and interact one another. Avatar means not only the other self but also the 'another being' that describes oneself in the cyberspace. If user's avatar shows expressive faces and behaves according to his thinking and emotion, he will have a feel of reality much more in the cyberspace. If avatar's countenances can be animated by just typing characters in avatar-based chat communication, the user is able to express his emotions more effectively. In this study, emotion-expressing vocabulary is analyzed and classified. Emotion-expressing vocabulary is essential to develop self-reactive avatar system in which avatar's countenances are automatically converted according to the words typed by users at chat. The results are as follows; First, emotion-expressing vocabulary selected out of Korean adjectives and intransitive verbs is made up of 209 words and is classified into 25 groups. Second, there are only 2 groups out of the 25 groups for positive expressions and others are for negative expressions. Therefore, negative expressions are more abundant than positive expressions in Korean vocabulary. Third, avatar's countenances are modelled according to the 25 groups by using the Quantification Method 3. The result shows that the emotion-expressing vocabulary has dose relations with avatar's countenances and is useful to communicate users' emotions. However, this study has some limits, in that Korean linguistical structure - the whole meaning of context - cannot be interpreted quantitatively.

  • PDF

A Sentiment Classification System Using Feature Extraction from Seed Words and Support Vector Machine (종자 어휘를 이용한 자질 추출과 지지 벡터 기계(SVM)을 이용한 문서 감정 분류 시스템의 개발)

  • Hwang, Jae-Won;Jeon, Tae-Gyun;Ko, Young-Joong
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.938-942
    • /
    • 2007
  • 신문 기사 및 상품 평은 특정 주제나 상품을 대상으로 하여 글쓴이의 감정과 의견이 잘 나타나 있는 대표적인 문서이다. 최근 여론 조사 및 상품 의견 조사 등 다양한 측면에서 대용량의 문서의 의미적 분류 및 분석이 요구되고 있다. 본 논문에서는 문서에 나타난 내용을 기준으로 문서가 나타내고 있는 감정을 긍정과 부정의 두 가지 범주로 분류하는 시스템을 구현한다. 문서 분류의 시작은 감정을 지닌 대표적인 종자 어휘(seed word)로부터 시작하며, 자질의 선정은 한국어 특징상 감정 및 감각을 표현하는 명사, 형용사, 부사, 동사를 대상으로 한다. 가중치 부여 방법은 한글 유의어 사전을 통해 종자 어휘의 의미를 확장하여 각각의 가중치를 책정한다. 단어 벡터로 표현된 입력 문서를 이진 분류기인 지지벡터 기계를 이용하여 문서에 나타난 감정을 판단하는 시스템을 구현하고 그 성능을 평가한다.

  • PDF

Expansion of Word Representation for Named Entity Recognition Based on Bidirectional LSTM CRFs (Bidirectional LSTM CRF 기반의 개체명 인식을 위한 단어 표상의 확장)

  • Yu, Hongyeon;Ko, Youngjoong
    • Journal of KIISE
    • /
    • v.44 no.3
    • /
    • pp.306-313
    • /
    • 2017
  • Named entity recognition (NER) seeks to locate and classify named entities in text into pre-defined categories such as names of persons, organizations, locations, expressions of times, etc. Recently, many state-of-the-art NER systems have been implemented with bidirectional LSTM CRFs. Deep learning models based on long short-term memory (LSTM) generally depend on word representations as input. In this paper, we propose an approach to expand word representation by using pre-trained word embedding, part of speech (POS) tag embedding, syllable embedding and named entity dictionary feature vectors. Our experiments show that the proposed approach creates useful word representations as an input of bidirectional LSTM CRFs. Our final presentation shows its efficacy to be 8.05%p higher than baseline NERs with only the pre-trained word embedding vector.

Learning Contextual Meaning Representations of Named Entities for Correcting Factual Inconsistent Summary (개체명 문맥의미표현 학습을 통한 기계 요약의 사실 불일치 교정)

  • Park, Junmo;Noh, Yunseok;Park, Seyoung
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.54-59
    • /
    • 2020
  • 사실 불일치 교정은 기계 요약 시스템이 요약한 결과를 실제 사실과 일치하도록 만드는 작업이다. 실제 요약 생성연구에서 가장 공통적인 문제점은 요약을 생성할 때 잘못된 사실을 생성하는 것이다. 이는 요약 모델이 실제 서비스로 상용화 하는데 큰 걸림돌이 되는 부분 중 하나이다. 본 논문에서는 원문으로부터 개체명을 가져와 사실과 일치하는 문장으로 고치는 방법을 제안한다. 이를 위해서 언어 모델이 개체명에 대한 문맥적 표현을 잘 생성할 수 있도록 학습시킨다. 그리고 학습된 모델을 이용하여 원문과 요약문에 등장한 개체명들의 문맥적 표현 비교를 통해 적절한 단어로 교체함으로써 요약문의 사실 불일치를 해소한다. 제안 모델을 평가하기 위해 추상 요약 데이터를 이용해 학습데이터를 만들어 학습하고, 실제 시나리오에서 적용가능성을 검증하기 위해 모델이 요약한 요약문을 이용해 실험을 수행했다. 실험 결과, 자동 평가와 사람 평가에서 제안 모델이 비교 모델보다 높은 성능을 보여주었다.

  • PDF

Semantic Document-Retrieval Based on Markov Logic (마코프 논리 기반의 시맨틱 문서 검색)

  • Hwang, Kyu-Baek;Bong, Seong-Yong;Ku, Hyeon-Seo;Paek, Eun-Ok
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.6
    • /
    • pp.663-667
    • /
    • 2010
  • A simple approach to semantic document-retrieval is to measure document similarity based on the bag-of-words representation, e.g., cosine similarity between two document vectors. However, such a syntactic method hardly considers the semantic similarity between documents, often producing semantically-unsound search results. We circumvent such a problem by combining supervised machine learning techniques with ontology information based on Markov logic. Specifically, Markov logic networks are learned from similarity-tagged documents with an ontology representing the diverse relationship among words. The learned Markov logic networks, the ontology, and the training documents are applied to the semantic document-retrieval task by inferring similarities between a query document and the training documents. Through experimental evaluation on real world question-answering data, the proposed method has been shown to outperform the simple cosine similarity-based approach in terms of retrieval accuracy.

Emotion Recognition based on Short Text using Semantic Orientation Analysis (의미 지향성 분석을 통한 단문 텍스트 기반 감정인지)

  • Kim, Hyun-Woo;Lee, Sung-Young;Chung, Tae-Choong;Yoon, Suk-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.375-377
    • /
    • 2012
  • 스마트폰과 같은 모바일 기기가 발전함에 따라 SNS, 모바일 메신저, SMS와 같은 단문 기반 메시지는 자신의 감정을 가장 잘 표현하는 매체이다. 그럼에도 불구하고 기존 연구는 주로 장문의 텍스트로부터 긍정, 부정 분류나 문서의 성향을 분석하는 것에 그치는 경우가 많다. 의미지향(Semantic Orientation)방법은 검색엔진을 통해 감정 키워드와 인지하고자 하는 단어의 동시 빈출 정도를 PMI로 계산한 것으로 WordNet과 같은 의미 사전이 존재하지 않는 한국어의 특성에서 적용 가능한 방법이다. 본 논문에서는 의미 지향성 및 다른 텍스트 기반 감정 분류 기술에 대해 비교하고 이들을 활용하여 한국어로 구성된 단문 텍스트에서 효율적인 감정 분류 기법을 제안하고자 한다.

Design of a Multilingual Translation System Based on Interlingual Approach (중간언어에 기반한 기계 번역시스템의 설계)

  • Kim, Sang-Kuk;Park, Chang-Ho
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.521-526
    • /
    • 1993
  • 다언어간 번역을 지향하는 기계번역시스템의 개발을 위해서는, 의미 이해기반의 해석기술과 언어에 독립적인 생성기술의 설계가 기본이므로 원시언어와 목표언어가 어느 한쪽의 언어지식에 의존하지 않고 언어형식화가 가능한 중간언어 구조를 설정하는 것이 중요하다. 따라서, 한국어를 중심으로 하는 다언어 번역의 설계에서는 비교적 문구조의 정형화가 이루어진 영어와는 달리 어순 배열의 자유도가 높고 조사의 격표시로 문장구조가 결정되는 한국어의 특성을 고려한 해석 및 생성 메카니즘이 필요하다. 본 논문에서는 문장에 내포된 심층의미의 중간 표현으로써, 단어의 의미를 개념화시킨 개념소(Conceptual Primitive)간의 의미적 결합관계를 나타내는 개념 그래프(Conceptual Graph)를 채택하고 설계한 다언어 번역지향의 중간언어기반 번역시스템에 대하여 기술한다.

  • PDF

An Automatic Evaluation Metric for Korean Paraphrase via Semantic Frame (시맨틱 프레임을 이용한 한국어 패러프레이즈 자동 평가 방법)

  • Park, Hancheol;Gweon, Gahgene;Choi, Ho-jin
    • Annual Conference of KIPS
    • /
    • 2014.04a
    • /
    • pp.761-764
    • /
    • 2014
  • 본 연구는 지능형 QA시스템과 관련한 연구에서, 자동 패러프레이즈 생성 시스템을 평가하는 새로운 방법을 제시한다. 기존의 패러프레이즈 생성 시스템의 자동 평가 방법은 참조할 수 있는 패러프레이즈 정보의 양이 크게 제한되어 있었으며, 원 문장의 콘텍스트(context)와 이에 의존하는 통사적 구조(syntactic structure) 및 의미적 구조의 유사성을 고려하지 않고, 단순 구/단어 수준의 의미 유사성을 기반으로 생성된 패러프레이즈를 평가하였다. 이러한 문제를 해결하기 위해 본 연구는 시맨틱 프레임(semantic frame)을 이용한 패러프레이즈 문장 평가 방법을 제시한다. 본 연구에서 제시하는 방법론은 문장의 콘텍스트를 표현하는 프레임과 이러한 프레임이 발생시키는 통사적, 의미적 구조의 유사성을 바탕으로 원 문장과 패러프레이즈 문장의 '의미 유사성', '어휘 형태 비 유사성'을 평가하는 방식이다.

Text Mining of Successful Casebook of Agricultural Settlement in Graduates of Korea National College of Agriculture and Fisheries - Frequency Analysis and Word Cloud of Key Words - (한국농수산대학 졸업생 영농정착 성공 사례집의 Text Mining - 주요단어의 빈도 분석 및 word cloud -)

  • Joo, J.S.;Kim, J.S.;Park, S.Y.;Song, C.Y.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.2
    • /
    • pp.57-72
    • /
    • 2018
  • In order to extract meaningful information from the excellent farming settlement cases of young farmers published by KNCAF, we studied the key words with text mining and created a word cloud for visualization. First, in the text mining results for the entire sample, the words 'CEO', 'corporate executive', 'think', 'self', 'start', 'mind', and 'effort' are the words with high frequency among the top 50 core words. Their ability to think, judge and push ahead with themselves is a result of showing that they have ability of to be managers or managers. And it is a expression of how they manages to achieve their dream without giving up their dream. The high frequency of words such as "father" and "parent" is due to the high ratio of parents' cooperation and succession. Also 'KNCAF', 'university', 'graduation' and 'study' are the results of their high educational awareness, and 'organic farming' and 'eco-friendly' are the result of the interest in eco-friendly agriculture. In addition, words related to the 6th industry such as 'sales' and 'experience' represent their efforts to revitalize farming and fishing villages. Meanwhile, 'internet', 'blog', 'online', 'SNS', 'ICT', 'composite' and 'smart' were not included in the top 50. However, the fact that these words were extracted without omission shows that young farmers are increasingly interested in the scientificization and high-tech of agriculture and fisheries Next, as a result of grouping the top 50 key words by crop, the words 'facilities' in livestock, vegetables and aquatic crops, the words 'equipment' and 'machine' in food crops were extracted as main words. 'Eco-friendly' and 'organic' appeared in vegetable crops and food crops, and 'organic' appeared in fruit crops. The 'worm' of eco-friendly farming method appeared in the food crops, and the 'certification', which means excellent agricultural and marine products, appeared only in the fishery crops. 'Production', which is related to '6th industry', appeared in all crops, 'processing' and 'distribution' appeared in the fruit crops, and 'experience' appeared in the vegetable crops, food crops and fruit crops. To visualize the extracted words by text mining, we created a word cloud with the entire samples and each crop sample. As a result, we were able to judge the meaning of excellent practices, which are unstructured text, by character size.

The linguistic and cultural phenomena derived from the interpretative ambiguity in the traditional Catalan time telling expressions (카탈루냐어의 전통적 시각표현의 해석적 모호성과 관련된 언어-문화적 현상)

  • Kwak, Jaeyong
    • Cross-Cultural Studies
    • /
    • v.50
    • /
    • pp.225-259
    • /
    • 2018
  • In this study, according to the Institut d'Estudis Catalan, it is noted that the traditional Catalan time telling system is essentially based on delineating time by the use of the 'quarts (=quarters)' of an hour. In this fasion, to tell the time 8:15, 8:30 and 8:45 they use '${\acute{E}}s$ un quart de nou.,' '$S{\acute{o}}n$ dos quarts de nou.,' and '$S{\acute{o}}n$ tres quarts de nou.,' but do not use constructions such as '$S{\acute{o}}n$ les vuit i quinze.,' '$S{\acute{o}}n$ les vuit i trenta/mitja.,' '$S{\acute{o}}n$ les vuit i quaranta-cinc.,' because these expressions are considered to be as dialectal variants or international notation-based variants. Moreover, the traditional Catalan time telling system does not use cardinal numbers, except in the case of 'cinc (five)' and 'deu (ten).' These linguistic phenomenon cause the invention of a unique Catalan digital watch, and has noted special designs for the creation of a Catalan analogue watch. For this reason, the quarter system in colloquial Catalan provokes an enormous interpretative ambiguity in daily routine expressions with 'quarts' like '$S{\acute{o}}n$ quarts of nou.' or 'entre dos i tres quarts' whose meaning is not delineated between sixteen and forty-four minutes. We will argue that the traditional Catalan time telling expressions do not have the use of the subtractive system, and the fraction word 'quart' lacks a specific meaning of fifteen minutes because the Catalan word 'quart' is etymologically related to the classical public bell system, not definitively to the traditional clock system.