• Title/Summary/Keyword: 단어 벡터

Search Result 300, Processing Time 0.032 seconds

텍스트 마이닝을 위한 그래프 기반 텍스트 표현 모델의 연구 동향 (A Study on Research Trends of Graph-Based Text Representations for Text Mining)

  • 장재영
    • 한국인터넷방송통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.37-47
    • /
    • 2013
  • 텍스트 마이닝은 비정형화된 텍스트를 분석하여 그 안에 내재된 패턴, 추세, 분포 등의 고급정보들을 추출하는 분야이다. 텍스트 마이닝은 기본적으로 비정형 데이터를 가정하므로 텍스트를 단순화된 모델로 표현하는 것이 필요하다. 현재까지 가장 많이 사용되고 있는 모델은 텍스트를 단순한 단어들의 집합으로 표현한 벡터공간 모델이다. 그러나 최근 들어 단어들의 의미적 관계까지 표현하기 위해 그래프를 이용한 텍스트 표현 모델을 많이 사용하고 있다. 본 논문에서는 텍스트 마이닝을 위한 기존의 연구 중에서 그래프에 기반한 텍스트 표현 모델의 방법들과 그들의 특징들을 기술한다. 또한 그래프 기반 텍스트 마이닝의 향후 발전방향에 대해서도 논한다.

온라인 학습을 이용한 한국어 의존구문분석 (Korean Dependency Parsing Using Online Learning)

  • 이용훈;이종혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.299-304
    • /
    • 2010
  • 본 논문에서는 온라인 학습을 이용한 한국어 의존구문분석 방법을 제안한다. CoNLL-X에서 1위를 차지한 그래프 기반 의존구문분석 방법을 한국어에 맞게 변형하고, 한국어의 교착어적 특성을 고려해 한국어에 적합한 자질 집합을 제시하였다. 특히 의존트리의 에지(edge)를 단어와 단어간의 의존관계가 아닌 부분트리(partial tree)와 부분트리의 의존관계로 바라보기 위해 부분트리가 공유하고 있는 기능어 정보를 추가 자질로 사용하였다. 또한 한국어의 지배소 후위(head-final) 언어 특성과 투사성(projectivity)을 이용하여 Eisner(1996) 알고리즘을 사용하지 않고도 O($n^3$)의 CYK알고리즘을 사용할 수 있었고, 이를 이용해 최적의 전역해(global optimum)를 찾을 수 있었다. 각 자질을 위한 최적의 가중치 벡터는 온라인 학습방법 중 하나인 Collins(2002)의 averaged perceptron 알고리즘을 사용함으로써 빠르게 모델을 학습할 수 있었다. 제안 모델을 국어정보베이스(KIBS) 말뭉치에 적용한 결과 어절 단위 정확률 88.42%의 높은 성능을 얻을 수 있었다.

  • PDF

VQ와 Fuzzy 이론을 이용한 단어인식 (Word Recognition Using VQ and Fuzzy Theory)

  • 김자용;최갑석
    • 한국음향학회지
    • /
    • 제10권4호
    • /
    • pp.38-47
    • /
    • 1991
  • 음성인식에 있어서 문제점의 하나는 발성자에 따른 주파수 변동문제이다. 본 논문에서는 이러한 음성 신호의 주파수 특성의 변동에 따른 영향을 해결하기 위하여 fuzzy 이론을 도입하였다. 여기서 표준패턴은 음성신호의 대표적인 특징들을 포함하고 있어야 하므로, 먼저 여러 화자가 발성한 단어들을 벡터 양자화한 코드북을 생성하였으며, 이코드북으로 부터 추출한 피크 주파수와 피크 에너지를 fuzzy화 패턴으로 작성하였다. 입력 음성신호로 부터 추출한 특징량인 스펙트럼의 피크 주파수와 피크에너지를 각각 멤버쉽 함수로 표현하여 fuzzy 추론에 의한 단어인식을 하였다. 실제 확신도 계산에 있어서는 계산량을 줄이기 위하여 fuzzy 값의 차만으로 확신도를 구하는 개선 확신도를 제안하여 사용하였다. 한국어 숫자음을 인식 실험한 결과 주파수 특성의 변동에 따른 영향을 해결할 수 있음을 확인하였으며, 제안된 개선 확신도 계산방법에 의해서 기억용량과 계산량을 감소 시킬 수 있었다.

  • PDF

단어 임베딩 기법을 이용한 한글의 의미 변화 파악 (Understanding the semantic change of Hangeul using word embedding)

  • 선현석;이영섭;임창원
    • 응용통계연구
    • /
    • 제34권3호
    • /
    • pp.295-308
    • /
    • 2021
  • 최근 들어 많은 사람들이 자신의 관심사를 SNS에 게시하거나 인터넷과 컴퓨터의 기술 발달로 디지털 형태의 문서 저장이 가능하게 됨으로써 생성되는 텍스트 자료의 양이 폭발적으로 증가하게 되었다. 이에 따라 수많은 문서 자료로부터 가치 있는 정보를 창출하기 위한 기술의 요구 또한 증가하고 있다. 본 연구에서는 대통령 연설 기록문과 신문기사 공공데이터를 활용하여 한글 단어들이 시간에 따라 어떻게 의미가 변화되어 가는지를 통계적 기법을 통해 발굴하였다. 이를 이용하여 한글의 통시적 변화 연구에 활용할 수 있는 방안을 제시한다. 기존 언어학자나 원어민의 직관에 의해 연구되던 한글의 이론적 언어 현상 연구에서 벗어나 누구나 사용할 수 있는 공공문서를 통해 수치화된 값을 도출하고 단어의 의미변화 현상을 설명하고자 한다.

Homogeneous Centroid Neural Network에 의한 Tied Mixture HMM의 군집화 (Clustering In Tied Mixture HMM Using Homogeneous Centroid Neural Network)

  • 박동철;김우성
    • 한국통신학회논문지
    • /
    • 제31권9C호
    • /
    • pp.853-858
    • /
    • 2006
  • 음성인식에서 TMHMM(Tied Mixture Hidden Markov Model)은 자유 매개변수의 수를 감소시키기 위한 좋은 접근이지만, GPDF(Gaussian Probability Density Function) 군집화 오류에 의해 음성인식의 오류를 발생시켰다. 본 논문은 TMHMM에서 발생하는 군집화 오류를 최소화하기 위하여 HCNN(Homogeneous Centroid Neural Network) 군집화 알고리즘을 제안한다. 제안된 알고리즘은 CNN(Centroid Neural Network)을 TMHMM상의 음향 특징벡터에 활용하였으며, 다른 상태에 소속된 확률밀도가 서로 겹쳐진 형태의 이질군집 지역에 더 많은 코드벡터를 할당하기 위해서 본 논문에서 새로 제안이 제안되는 이질성 거리척도를 사용 하였다. 제안된 알고리즘을 한국어 고립 숫자단어의 인식문제에 적용한 결과, 기존 K-means 알고리즘이나 CNN보다 각각 14.63%, 9,39%의 오인식률의 감소를 얻을 수 있었다.

감정요소를 사용한 정보검색에 관한 연구 (A Study of using Emotional Features for Information Retrieval Systems)

  • 김명관;박영택
    • 정보처리학회논문지B
    • /
    • 제10B권6호
    • /
    • pp.579-586
    • /
    • 2003
  • 감정요소를 사용한 정보검색시스템은 감정에 기반한 정보검색을 수행하기 위하여 감정시소러스를 구성하였으며 이를 사용한 감정요소추출기를 구현하였다. 감정요소추출기는 기본 5가지 감정 요소를 해당 문서에서 추출하여 문서를 벡터화시킨다. 벡터화시킨 문서들은 k-nearest neighbor, 단순 베이지안 및 상관계수기법을 사용한 2단계 투표방식을 통해 학습하고 분류하였다. 실험결과 분류 방식과 K-means를 이용한 클러스터링에서 감정요소에 기반한 방식이 더 우수하다는 결과와 5,000 단어 미만의 문서 검색에 감정기반 검색이 유리하다는 것을 보였다.

의미 커널과 워드넷을 이용한 주관식 문제 채점 시스템의 설계 및 구현 (Design and Implementation of Short-Essay Marking System by Using Semantic Kernel and WordNet)

  • 조우진;추승우;오정석;김한샘;김유섭;이재영
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2005년도 춘계학술발표대회
    • /
    • pp.1027-1030
    • /
    • 2005
  • 기존 의미커널을 적용한 주관식 채점 시스템은 여러 답안과 말뭉치에서 추출한 색인어들과의 상관관계를 벡터방식으로 표현하여 자연어 처리에 대한 문제를 해결하려 하였다. 본 논문에서는 기존 시스템의 답안 및 색인어의 표현 한계로 인한 유사도 계산오차 가능성에 대한 문제를 해결하고자 시소러스를 이용한 임의 추출 방식의 답안 확장을 적용하였다. 서술형 주관식 평가에서는 문장의 문맥보다는 사용된 어휘에 채점가중치가 높다는 점을 착안, 출제자와 수험자 모두의 답안을 동의어, 유의어 그룹으로 확장하여 채점 성능을 향상시키려 하였다. 우선 두 답안을 형태소 분석기를 이용해 색인어를 추출한 후 워드넷을 이용하여 동의어, 유의어 그룹으로 확장한다. 이들을 말뭉치 색인을 이용하여 단어들 간 상관관계를 측정하기 위한 벡터로 구성하고 의미 커널을 적용하여 정답 유사도를 계산하였다. 출제자의 채점결과와 각 모델의 채점 점수의 상관계수 계산 결과 ELSA 모델이 가장 높은 유사도를 나타내었다..

  • PDF

어휘정보와 시소러스에 기반한 스팸메일 필터링 (Spam-mail Filtering based on Lexical Information and Thesaurus)

  • 강신재;김종완
    • 한국산업정보학회논문지
    • /
    • 제11권1호
    • /
    • pp.13-20
    • /
    • 2006
  • 본 연구에서는 어휘정보와 개념정보를 기반으로 스팸메일 필터링 시스템을 구축하였다. 스팸메일을 판별할 수 있는 정보를 두 가지로 구분하였는데, 확실한 정보군은 송신자 정보, URL, 그리고 최근 스팸 키워드 리스트이며, 덜 확실한 정보군은 메일 본문에서 추출한 단어목록과 개념코드이다. 먼저 확실한 정보군을 이용하여 스팸메일을 분류하고 그다음 덜 확실한 정보군을 이용하였다. 메일 본문에 포함된 어휘정보와 개념코드는 SVM 기계학습을 한 후 사용된다. 본 연구의 결과, 더 많은 어휘정보를 특징벡터로 사용하였을 때 스팸 정확률이 상승하였으며 추가로 개념코드를 특징벡터에 포함시켰을 때 스팸 재현율이 상승하였다.

  • PDF

한글문서분류에 SVD를 이용한 BPNN 알고리즘 (BPNN Algorithm with SVD Technique for Korean Document categorization)

  • 리청화;변동률;박순철
    • 한국산업정보학회논문지
    • /
    • 제15권2호
    • /
    • pp.49-57
    • /
    • 2010
  • 본 논문에서는 역전파 신경망 알고리즘(BPNN: Back Propagation Neural Network)과 Singular Value Decomposition(SVD)를 이용하는 한글 문서 분류 시스템을 제안한다. BPNN은 학습을 통하여 만들어진 네트워크를 이용하여 문서분류를 수행한다. 이 방법의 어려움은 분류기에 입력되는 특징 공간이 너무 크다는 것이다. SVD를 이용하면 고차원의 벡터를 저차원으로 줄일 수 있고, 또한 의미있는 벡터 공간을 만들어 단어 사이의 중요한 관계성을 구축할 수 있다. 본 논문에서 제안한 BPNN의 성능 평가를 위하여 한국일보-2000/한국일보-40075 문서범주화 실험문서집합의 데이터 셋을 이용하였다. 실험결과를 통하여 BPNN과 SVD를 사용한 시스템이 한글 문서 분류에 탁월한 성능을 가지는 것을 보여준다.

뉴스 클러스터링을 위한 문장 간 상호 작용 기반 문서 쌍 유사도 측정 모델들 (Sentence Interaction-based Document Similarity Models for News Clustering)

  • 최성환;손동현;이호창
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.401-407
    • /
    • 2020
  • 뉴스 클러스터링에서 두 문서 간의 유사도는 클러스터의 특성을 결정하는 중요한 부분 중 하나이다. 전통적인 단어 기반 접근 방법인 TF-IDF 벡터 유사도는 문서 간의 의미적인 유사도를 반영하지 못하고, 기존 딥러닝 기반 접근 방법인 시퀀스 유사도 측정 모델은 문서 단위에서 나타나는 긴 문맥을 반영하지 못하는 문제점을 가지고 있다. 이 논문에서 우리는 뉴스 클러스터링에 적합한 문서 쌍 유사도 모델을 구성하기 위하여 문서 쌍에서 생성되는 다수의 문장 표현들 간의 유사도 정보를 종합하여 전체 문서 쌍의 유사도를 측정하는 네 가지 유사도 모델을 제안하였다. 이 접근 방법들은 하나의 벡터로 전체 문서 표현을 압축하는 HAN (hierarchical attention network)와 같은 접근 방법에 비해 두 문서에서 나타나는 문장들 간의 직접적인 유사도를 통해서 전체 문서 쌍의 유사도를 추정한다. 그리고 기존 접근 방법들인 SVM과 HAN과 제안하는 네 가지 유사도 모델을 통해서 두 문서 쌍 간의 유사도 측정 실험을 하였고, 두 가지 접근 방법에서 기존 접근 방법들보다 높은 성능이 나타나는 것을 확인할 수 있었고, 그래프 기반 접근 방법과 유사한 성능을 보이지만 더 효율적으로 문서 유사도를 측정하는 것을 확인하였다.

  • PDF