Journal of Korea Society of Industrial Information Systems (한국산업정보학회논문지)
- Volume 11 Issue 1
- /
- Pages.13-20
- /
- 2006
- /
- 1229-3741(pISSN)
Spam-mail Filtering based on Lexical Information and Thesaurus
어휘정보와 시소러스에 기반한 스팸메일 필터링
- Published : 2006.03.01
Abstract
In this paper, we constructed a spam-mail filtering system based on the lexical and conceptual information. There are two kinds of information that can distinguish the spam mail from the legitimate mil. The definite information is the mail sender's information, URL, a certain spam keyword list, and the less definite information is the word lists and concept codes extracted from the mail body. We first classified the spam mail by using the definite information, and then used the less definite information. We used the lexical information and concept codes contained in the email body for SVM learning. According to our results the spam precision was increased if more lexical information was used as features, and the spam recall was increased when the concept codes were included in features as well.
본 연구에서는 어휘정보와 개념정보를 기반으로 스팸메일 필터링 시스템을 구축하였다. 스팸메일을 판별할 수 있는 정보를 두 가지로 구분하였는데, 확실한 정보군은 송신자 정보, URL, 그리고 최근 스팸 키워드 리스트이며, 덜 확실한 정보군은 메일 본문에서 추출한 단어목록과 개념코드이다. 먼저 확실한 정보군을 이용하여 스팸메일을 분류하고 그다음 덜 확실한 정보군을 이용하였다. 메일 본문에 포함된 어휘정보와 개념코드는 SVM 기계학습을 한 후 사용된다. 본 연구의 결과, 더 많은 어휘정보를 특징벡터로 사용하였을 때 스팸 정확률이 상승하였으며 추가로 개념코드를 특징벡터에 포함시켰을 때 스팸 재현율이 상승하였다.
Keywords