• Title/Summary/Keyword: 단어 검색

Search Result 560, Processing Time 0.032 seconds

A Keyphrase Extraction Model for Each Conference or Journal (학술대회 및 저널별 기술 핵심구 추출 모델)

  • Jeong, Hyun Ji;Jang, Gwangseon;Kim, Tae Hyun;Sin, Donggu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.10a
    • /
    • pp.81-83
    • /
    • 2022
  • Understanding research trends is necessary to select research topics and explore related works. Most researchers search representative keywords of interesting domains or technologies to understand research trends. However some conferences in artificial intelligence or data mining fields recently publish hundreds to thousands of papers for each year. It makes difficult for researchers to understand research trend of interesting domains. In our paper, we propose an automatic technology keyphrase extraction method to support researcher to understand research trend for each conference or journal. Keyphrase extraction that extracts important terms or phrases from a text, is a fundamental technology for a natural language processing such as summarization or searching, etc. Previous keyphrase extraction technologies based on pretrained language model extract keyphrases from long texts so performances are degraded in short texts like titles of papers. In this paper, we propose a techonolgy keyphrase extraction model that is robust in short text and considers the importance of the word.

  • PDF

The Relationship between Internet Search Volumes and Stock Price Changes: An Empirical Study on KOSDAQ Market (개별 기업에 대한 인터넷 검색량과 주가변동성의 관계: 국내 코스닥시장에서의 산업별 실증분석)

  • Jeon, Saemi;Chung, Yeojin;Lee, Dongyoup
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.2
    • /
    • pp.81-96
    • /
    • 2016
  • As the internet has become widespread and easy to access everywhere, it is common for people to search information via online search engines such as Google and Naver in everyday life. Recent studies have used online search volume of specific keyword as a measure of the internet users' attention in order to predict disease outbreaks such as flu and cancer, an unemployment rate, and an index of a nation's economic condition, and etc. For stock traders, web search is also one of major information resources to obtain data about individual stock items. Therefore, search volume of a stock item can reflect the amount of investors' attention on it. The investor attention has been regarded as a crucial factor influencing on stock price but it has been measured by indirect proxies such as market capitalization, trading volume, advertising expense, and etc. It has been theoretically and empirically proved that an increase of investors' attention on a stock item brings temporary increase of the stock price and the price recovers in the long run. Recent development of internet environment enables to measure the investor attention directly by the internet search volume of individual stock item, which has been used to show the attention-induced price pressure. Previous studies focus mainly on Dow Jones and NASDAQ market in the United States. In this paper, we investigate the relationship between the individual investors' attention measured by the internet search volumes and stock price changes of individual stock items in the KOSDAQ market in Korea, where the proportion of the trades by individual investors are about 90% of the total. In addition, we examine the difference between industries in the influence of investors' attention on stock return. The internet search volume of stocks were gathered from "Naver Trend" service weekly between January 2007 and June 2015. The regression model with the error term with AR(1) covariance structure is used to analyze the data since the weekly prices in a stock item are systematically correlated. The market capitalization, trading volume, the increment of trading volume, and the month in which each trade occurs are included in the model as control variables. The fitted model shows that an abnormal increase of search volume of a stock item has a positive influence on the stock return and the amount of the influence varies among the industry. The stock items in IT software, construction, and distribution industries have shown to be more influenced by the abnormally large internet search volume than the average across the industries. On the other hand, the stock items in IT hardware, manufacturing, entertainment, finance, and communication industries are less influenced by the abnormal search volume than the average. In order to verify price pressure caused by investors' attention in KOSDAQ, the stock return of the current week is modelled using the abnormal search volume observed one to four weeks ahead. On average, the abnormally large increment of the search volume increased the stock return of the current week and one week later, and it decreased the stock return in two and three weeks later. There is no significant relationship with the stock return after 4 weeks. This relationship differs among the industries. An abnormal search volume brings particularly severe price reversal on the stocks in the IT software industry, which are often to be targets of irrational investments by individual investors. An abnormal search volume caused less severe price reversal on the stocks in the manufacturing and IT hardware industries than on average across the industries. The price reversal was not observed in the communication, finance, entertainment, and transportation industries, which are known to be influenced largely by macro-economic factors such as oil price and currency exchange rate. The result of this study can be utilized to construct an intelligent trading system based on the big data gathered from web search engines, social network services, and internet communities. Particularly, the difference of price reversal effect between industries may provide useful information to make a portfolio and build an investment strategy.

Automatic Detection and Extraction of Transliterated Foreign Words Using Hidden Markov Model (은닉 마르코프 모델을 이용한 음차표기된 외래어의 자동인식 및 추출 기법)

  • 오종훈;최기선
    • Korean Journal of Cognitive Science
    • /
    • v.12 no.3
    • /
    • pp.19-28
    • /
    • 2001
  • In this paper, we describe an algorithm for transliterated foreign word extraction in Korean language. In the proposed method we reformulate the transliterated foreign word extraction problem as a syllable-tagging problem such that each syllable is tagged with a transliterated foreign syllable tag or a pure Korean syllable tag. Syllable sequences of Korean strings ale modeled by Hidden Markov Model whose state represents a character with binary marking to indicate whether the character forms a Korean word or not. The proposed method extracts a transliterated foreign word with high recall rate and precision rate. Moreover, our method shows good performance even with small-sized training corpora.

  • PDF

A Study on the Natural Language Generation by Machine Translation (영한 기계번역의 자연어 생성 연구)

  • Hong Sung-Ryong
    • Journal of Digital Contents Society
    • /
    • v.6 no.1
    • /
    • pp.89-94
    • /
    • 2005
  • In machine translation the goal of natural language generation is to produce an target sentence transmitting the meaning of source sentence by using an parsing tree of source sentence and target expressions. It provides generator with linguistic structures, word mapping, part-of-speech, lexical information. The purpose of this study is to research the Korean Characteristics which could be used for the establishment of an algorism in speech recognition and composite sound. This is a part of realization for the plan of automatic machine translation. The stage of MT is divided into the level of morphemic, semantic analysis and syntactic construction.

  • PDF

Learning User Interest using Hierarchical Concept indexing based on Ontology (온톨로지 기반의 계층적 개념 인덱싱을 이용한 사용자 관심사 학습)

  • Park Ji-Hyun;Kim Heung-Nam;Jo Geun-Sik
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11b
    • /
    • pp.646-648
    • /
    • 2005
  • 인터넷의 급속한 성장과 더불어 사용자들은 인터넷을 통해 많은 정보를 얻을 수 있게 되었으며 최신 뉴스를 실시간으로 접근할 수 있게 되었다. 이에 따라 방대한 정보 속에 사용자 관심사에 맞는 정보를 효과적으로 검색하기 위한 여러 방법들이 연구되어 왔다. 하지만 기존의 많은 선행 연구들은 단어 빈도 기반의 키워드 벡터 모델을 이용하여 사용자의 관심사를 학습하고 있다. 이러한 키워드 벡터 모델은 사용자의 선호도를 명확하게 기술하지 못하고 키워드를 이용한 특징 벡터 (feature-vector)는 개념들 사이의 관계를 찾기 어려운 한계를 가지고 있다. 이를 개선하기 위해 본 논문에선 계층적 개념 인덱싱(Hierarchical Concept Indexing)을 이용한 온톨로지 형태의 개인화된 사용자 프로파일을 만드는 방법을 제안한다. 생성된 사용자 프로파일에 개념 간의 유사도와 개념에 대한 사용자의 관심도를 고려하여 보다 개인의 선호도에 맞는 기사를 제공한다. 실험에서는 제안된 방법의 성능 평가를 위해서 기존의 키워드 벡터 모델의 학습 방법인 WebMate 시스템과 비교 분석하였다. 그 결과 제안하는 방법이 키워드 벡터를 이용한 학습 방법보다 향상된 성능을 보였다.

  • PDF

Design and Implementation of Finite-State-Transducer Preprocessor for an Efficient Parsing and Translation in Korean-to-English Machine Translation (한영 기계번역에서의 효율적인 구문분석과 번역을 위한 유한상태 변환기 기반 전처리기의 설계 및 구현)

  • Park, Jun-Sik;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.128-134
    • /
    • 1999
  • 기계번역이나 정보검색 등에 적용되는 자연언어처리기술에 있어서 구문분석은 매우 중요한 위치를 차지한다. 하지만, 문장의 길이가 증가함에 따라 구문분석의 복잡도는 크게 증가하게 된다. 이를 해결하기 위한 많은 노력 중에서 전처리기의 지원을 통해 구문분석기의 부담을 줄이려는 방법이 있다. 본 논문에서는 구문분석의 애매성과 복잡성을 감소시키기 위해 유한상태 변환기 (Finite-State-Transducer FSI)를 이용한 전처리기를 제안한다. 유한상태 변환기는 사전표현, 단어분할, 품사태깅 등에 널리 사용되어 왔는데, 본 논문에서는 유한상태 변환기를 이용하여 형태소 분석된 문장에서 시간표현 등의 제한된 표현들을 구문요소화하는 전처리기를 설계 및 구현하였다. 본 논문에서는 기계번역기에서의 구문분석기 뿐만 아니라 변환지식의 모듈화를 지원하기 위해 유한상태 변환기를 이용하여 시간표현 등의 부분적인 표현들을 번역하는 방법을 제안한다. 또한 유한상태 변환기의 편리한 작성을 위하여 유한상태 변환기 작성 지원도구를 구현하였다. 본 논문에서는 전처리기의 적용을 통해 구문분석기의 부담을 덜어 주며 기계번역기의 변환부분의 일부를 성공적으로 담당할 수 있음을 보여 준다.

  • PDF

Design & Evaluation of an Intelligent Model for Extracting the Web User' Preference (웹 사용자의 선호도 추출을 위한 지능모델 설계 및 평가)

  • Kim, Kwang-Nam;Yoon, Hee-Byung;Kim, Hwa-Soo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.443-450
    • /
    • 2005
  • In this paper, we propose an intelligent model lot extraction of the web user's preference and present the results of evaluation. For this purpose, we analyze shortcomings of current information retrieval engine being used and reflect preference weights on learner. As it doesn't depend on frequency of each word but intelligently learns patterns of user behavior, the mechanism Provides the appropriate set of results about user's questions. Then, we propose the concept of preference trend and its considerations and present an algorithm for extracting preference with examples. Also, we design an intelligent model for extraction of behavior patterns and propose HTML index and process of intelligent learning for preference decision. Finally, we validate the proposed model by comparing estimated results(after applying the Preference) of document ranking measurement.

Hybrid Food Recommendation System Using Auto-generated User Profiles (자동 생성된 사용자 프로파일을 이용한 하이브리드 음식 추천 시스템)

  • Jeong, Ju-Seok;Kang, Sin-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.5
    • /
    • pp.609-617
    • /
    • 2011
  • This paper proposes a personalized food recommendation system using user profiles auto-generated from Twitter. The user profiles are generated by extracting nouns from Twitter, and calculating emotional scores according to whether each noun is collocated with emotion words. Representative noun information for each food is constructed by analyzing web pages relevant to foods. Appropriate foods for users can be recommended by calculating similarities among the extracted resources. The proposed system has an advantage in that it can always recommend foods even if a user is a newcomer.

A Space Compression of Three-Dimensional Bitmap Indexing using Linked List (연결 리스트를 이용한 3차원 비트맵 인덱싱의 공간 축약)

  • Lee, Jae-Min;Hwang, Byung-Yeon
    • Annual Conference of KIPS
    • /
    • 2003.05c
    • /
    • pp.1519-1522
    • /
    • 2003
  • 기존의 웹 문서나 컨텐츠들의 표현적 한계를 극복하기 위한 방안으로 메타 데이터에 관한 다양한 연구가 수행되어졌고 그 결과의 산물중에 가장 대표적인 것으로 XML을 들 수 있다. XML은 문서의 내용뿐 아니라 구조까지도 기술할 수 있는 장점을 통해 향후 정보 교환에 핵심적인 역할을 할 것으로 기대되어지고 있으며 이에 따라 XML 문서를 효율적으로 저장하고 검색하기 위한 다양한 연구가 진행되고 있다. BitCube는 Bit-wise 연산이 가능한 3차원 비트맵 인덱싱을 사용하여 XML 문서들의 구조적 유사성에 따라 클러스터링하고 사용자의 질의에 대한 처리를 수행하는 인덱싱 기법으로 그것의 빠른 성능을 입증하였다. 그러나 BitCube의 클러스터링은 XML 문서의 경로에 중점을 둔 것이므로 클러스터와 경로가 담고 있는 실제 단어들간에는 연관성이 없으므로 3차원 비트맵 인덱스는 하나의 평면을 제외한 모든 평면이 굉장히 높은 공간 사용량을 갖는 회소행렬이 된다. 본 논문에서는 늘어나는 방대한 문서의 양으로 인한 시스템의 성능 저하를 막고 안정적인 성능을 유지할 수 있도록 기존 연산의 성능을 저하시키지 않으면서 공간을 최소화 할 수 있는 연결 리스트틀 설계하고 3차원 비트맵 인덱스를 연결 리스트로 재구성하는 방법을 제시한다.

  • PDF

Design and Implementation of a Subjective-type Evaluation System Using Syntactic and Case-Role Information (구문-격의미 정보를 이용한 주관식 문제 채점 시스템 설계 및 구현)

  • Kang, Won-Seog
    • The Journal of Korean Association of Computer Education
    • /
    • v.10 no.5
    • /
    • pp.61-69
    • /
    • 2007
  • The subjective-type evaluation can estimate the high-recognition ability, but has the problem of the objectivity and reliability of the evaluation, and the difficulty of Korean language processing. To solve the problem, this paper designs and implements a subjective-type evaluation system using syntactic and case-role information. This system can reduce the time and endeavor for evaluation and provide the objectivity of the evaluation. The system results the 75% success rate to the instructor evaluation and gets the better precision and recall than the word extraction evaluation system. We expect that this system will become a basis of the research on the subjective-type evaluation.

  • PDF