• Title/Summary/Keyword: 단안카메라

Search Result 58, Processing Time 0.025 seconds

3D Stereoscopic Augmented Reality with a Monocular Camera (단안카메라 기반 삼차원 입체영상 증강현실)

  • Rho, Seungmin;Lee, Jinwoo;Hwang, Jae-In;Kim, Junho
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.3
    • /
    • pp.11-20
    • /
    • 2016
  • This paper introduces an effective method for generating 3D stereoscopic images that gives immersive 3D experiences to viewers using mobile-based binocular HMDs. Most of previous AR systems with monocular cameras have a common limitation that the same real-world images are provided to the viewer's eyes without parallax. In this paper, based on the assumption that viewers focus on the marker in the scenario of marker based AR, we recovery the binocular disparity about a camera image and a virtual object using the pose information of the marker. The basic idea is to generate the binocular disparity for real-world images and a virtual object, where the images are placed on the 2D plane in 3D defined by the pose information of the marker. For non-marker areas in the images, we apply blur effects to reduce the visual discomfort by decreasing their sharpness. Our user studies show that the proposed method for 3D stereoscopic image provides high depth feeling to viewers compared to the previous binocular AR systems. The results show that our system provides high depth feelings, high sense of reality, and visual comfort, compared to the previous binocular AR systems.

Height Determination Using Vanishing Points of a Single Camera for Monitoring of Construction Site (건설현장 모니터링을 위한 단안 카메라 기반의 소실점을 이용한 높이 결정)

  • Choi, In-Ha;So, Hyeong-Yoon;Kim, Eui-Myoung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.51 no.2
    • /
    • pp.73-82
    • /
    • 2021
  • According to the government's announcement of the safety management enhancement policy for small and medium-sized private construction sites, the subject of mandatory CCTV installation has been expanded from large construction sites to small and medium-sized construction sites. However, since the existing CCTV at construction sites has been used for simple control for safety management, so research is needed for monitoring of construction sites. Therefore, in this study, three vanishing points were calculated based on a single image taken with a monocular camera, and then a camera matrix containing interior orientation parameters information was determined. And the accuracy was verified by calculating the height of the target object from the height of the reference object. Through height determination experiments using vanishing points based on a monocular camera, it was possible to determine the height of target objects only with a single image without separately surveying of ground control points. As a result of the accuracy evaluation, the root mean square error was ±0.161m. Therefore, it is determined that the progress of construction work at the construction sites can be monitored through the single image taken using the single camera.

Real-Time Monocular Camera Pose Estimation which is Robust to Dynamic Environment (동적 환경에 강인한 단안 카메라의 실시간 자세 추정 기법)

  • Bak, Junhyeong;Park, In Kyu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.322-323
    • /
    • 2021
  • 증강현실이나 자율 주행, 드론 등의 기술에서 현재 위치와 시점을 파악하기 위해서는 실시간 카메라 자세 추정이 필요하다. 이를 위해 가장 일반적인 방식인 연속적인 단안 영상으로부터 카메라 자세를 추정하는 방식은 두 영상의 정적 객체 간에 견고한 특징점 매칭이 이루어져야한다. 하지만 일반적인 영상들은 다양한 이동 객체가 존재하는 동적 환경이므로 정적 객체만의 매칭을 보장하기 어렵다는 문제가 있다. 본 논문은 이 같은 동적 환경 문제를 해결하기 위해, 신경망 기반의 객체 분할 기법으로 영상 속 객체를 추출하고, 객체별 특징점 매칭 및 자세 추정 결과로 정적 객체를 특정해 매칭하는 방법을 제안한다. 또한, 제안하는 정적 객체 특정 방식에 적합한 신경망 기반 특징점 추출 방법을 사용하면 동적 환경에 보다 강인한 카메라 자세 추정이 가능함을 실험을 통해 확인한다.

  • PDF

Monocular Vision based Relative Position Measurement of an Aircraft (단안카메라를 이용한 항공기의 상대 위치 측정)

  • Kim, Jeong-Ho;Lee, Chang-Yong;Lee, Mi-Hyun;Han, Dong-In;Lee, Dae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.289-295
    • /
    • 2015
  • This paper describes a ground monocular vision-based measurement algorithm measuring relative range and position of aircraft using the information of wingspan and optical parameters for the camera. A technique obtaining an aircraft image is also described in this paper. This technique can be used as external measurement for autonomous landing instead of ILS. To verify the performance of these algorithms, flight experiment is performed using light sport aircraft with GPS and monocular camera. Finally we obtained the reasonable RMSE of 1.85m is obtained.

A Study on the Evaluation Method of ACC Test Using Monocular Camera (단안카메라를 활용한 ACC 시험평가 방법에 관한 연구)

  • Kim, Bong-Ju;Lee, Seon-Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.43-51
    • /
    • 2020
  • Currently, the second level of the six stages of self-driving technology, as defined by SAE, is commercialized, and the third level is preparing for commercialization. The purpose of ACC is to be evaluated as a system useful for preventing and preventing accidents by minimizing driver fatigue through longitudinal speed control and relative distance control of the vehicle. In this regard, for the study of safety assessment methods in the practical environment of ACC. Distance measurement method using monocular camera and data acquisition equipment such as DGPS are utilized. Based on the evaluation scenario considering the domestic road environment proposed by the preceding study, the relative distance obtained from equipment such as DPGS and the relative distance using a monocular camera in the actual test is verified by comparing and analyzing the safety assessment. The comparison by scenario results showed a minimum error rate of 3.83% in Scenario 1 and a maximum of 14.61% in Scenario 6. The cause of the maximum error is that the lane recognition is not accurate in the camera image and irregular operation conditions such as rushing in or exiting the surrounding area from the walkway. It is expected that safety evaluation using a monocular camera will be possible for other ADAS systems in the future.

3D Depth Information Extraction Algorithm Based on Motion Estimation in Monocular Video Sequence (단안 영상 시퀸스에서 움직임 추정 기반의 3차원 깊이 정보 추출 알고리즘)

  • Park, Jun-Ho;Jeon, Dae-Seong;Yun, Yeong-U
    • The KIPS Transactions:PartB
    • /
    • v.8B no.5
    • /
    • pp.549-556
    • /
    • 2001
  • The general problems of recovering 3D for 2D imagery require the depth information for each picture element form focus. The manual creation of those 3D models is consuming time and cost expensive. The goal in this paper is to simplify the depth estimation algorithm that extracts the depth information of every region from monocular image sequence with camera translation to implement 3D video in realtime. The paper is based on the property that the motion of every point within image which taken from camera translation depends on the depth information. Full-search motion estimation based on block matching algorithm is exploited at first step and ten, motion vectors are compensated for the effect by camera rotation and zooming. We have introduced the algorithm that estimates motion of object by analysis of monocular motion picture and also calculates the averages of frame depth and relative depth of region to the average depth. Simulation results show that the depth of region belongs to a near object or a distant object is in accord with relative depth that human visual system recognizes.

  • PDF

Long Distance Vehicle Recognition and Tracking using Shadow (그림자를 이용한 원거리 차량 인식 및 추적)

  • Ahn, Young-Sun;Kwak, Seong-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.251-256
    • /
    • 2019
  • This paper presents an algorithm for recognizing and tracking a vehicle at a distance using a monocular camera installed at the center of the windshield of a vehicle to operate an autonomous vehicle in a racing. The vehicle is detected using the Haar feature, and the size and position of the vehicle are determined by detecting the shadows at the bottom of the vehicle. The region around the recognized vehicle is determined as ROI (Region Of Interest) and the vehicle shadow within the ROI is found and tracked in the next frame. Then the position, relative speed and direction of the vehicle are predicted. Experimental results show that the vehicle is recognized with a recognition rate of over 90% at a distance of more than 100 meters.

A Study on the Test Evaluation Method of LKAS Using a Monocular Camera (단안 카메라를 이용한 LKAS 시험평가 방법에 관한 연구)

  • Bae, Geon Hwan;Lee, Seon Bong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.3
    • /
    • pp.34-42
    • /
    • 2020
  • ADAS (Advanced Driver Assistance Systems) uses sensors such as camera, radar, lidar and GPS (Global Positioning System). Among these sensors, the camera has many advantages compared with other sensors. The reason is that it is cheap, easy to use and can identify objects. In this paper, therefore, a theoretical formula was proposed to obtain the distance from the vehicle's front wheel to the lane using a monocular camera. And the validity of the theoretical formula was verified through the actual vehicle test. The results of the actual vehicle test in scenario 4 resulted in a maximum error of 0.21 m. The reason is that it is difficult to detect the lane in the curved road, and it is judged that errors occurred due to the occurrence of significant yaw rates. The maximum error occurred in curve road condition, but the error decreased after lane return. Therefore, the proposed theoretical formula makes it possible to assess the safety of the LKA system.

Unsupervised Monocular Depth Estimation Using Self-Attention for Autonomous Driving (자율주행을 위한 Self-Attention 기반 비지도 단안 카메라 영상 깊이 추정)

  • Seung-Jun Hwang;Sung-Jun Park;Joong-Hwan Baek
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.2
    • /
    • pp.182-189
    • /
    • 2023
  • Depth estimation is a key technology in 3D map generation for autonomous driving of vehicles, robots, and drones. The existing sensor-based method has high accuracy but is expensive and has low resolution, while the camera-based method is more affordable with higher resolution. In this study, we propose self-attention-based unsupervised monocular depth estimation for UAV camera system. Self-Attention operation is applied to the network to improve the global feature extraction performance. In addition, we reduce the weight size of the self-attention operation for a low computational amount. The estimated depth and camera pose are transformed into point cloud. The point cloud is mapped into 3D map using the occupancy grid of Octree structure. The proposed network is evaluated using synthesized images and depth sequences from the Mid-Air dataset. Our network demonstrates a 7.69% reduction in error compared to prior studies.

Method to Improve Localization and Mapping Accuracy on the Urban Road Using GPS, Monocular Camera and HD Map (GPS와 단안카메라, HD Map을 이용한 도심 도로상에서의 위치측정 및 맵핑 정확도 향상 방안)

  • Kim, Young-Hun;Kim, Jae-Myeong;Kim, Gi-Chang;Choi, Yun-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1095-1109
    • /
    • 2021
  • The technology used to recognize the location and surroundings of autonomous vehicles is called SLAM. SLAM standsfor Simultaneously Localization and Mapping and hasrecently been actively utilized in research on autonomous vehicles,starting with robotic research. Expensive GPS, INS, LiDAR, RADAR, and Wheel Odometry allow precise magnetic positioning and mapping in centimeters. However, if it can secure similar accuracy as using cheaper Cameras and GPS data, it will contribute to advancing the era of autonomous driving. In this paper, we present a method for converging monocular camera with RTK-enabled GPS data to perform RMSE 33.7 cm localization and mapping on the urban road.