Abstract
The general problems of recovering 3D for 2D imagery require the depth information for each picture element form focus. The manual creation of those 3D models is consuming time and cost expensive. The goal in this paper is to simplify the depth estimation algorithm that extracts the depth information of every region from monocular image sequence with camera translation to implement 3D video in realtime. The paper is based on the property that the motion of every point within image which taken from camera translation depends on the depth information. Full-search motion estimation based on block matching algorithm is exploited at first step and ten, motion vectors are compensated for the effect by camera rotation and zooming. We have introduced the algorithm that estimates motion of object by analysis of monocular motion picture and also calculates the averages of frame depth and relative depth of region to the average depth. Simulation results show that the depth of region belongs to a near object or a distant object is in accord with relative depth that human visual system recognizes.
2차원 영상으로 부터 3차원 영상으로 복원하는 일은 일반적으로 카메라의 초점에서 영상 프레임의 각 픽셀까지의 깊이 정보가 필요하고, 3차원 모델의 복원에 관한 일반적인 수작업은 많은 식나과 비용이 소모된다. 본 논문에서는 카메라의 움직임이 포함되어 있는 단안 영상 시퀸스로부터 3차원 영상 제작에 필요한 상대적인 깊이 정보를 실시간으로 추출하는 알고리즘을 제안하고, 하드웨어를 구현하기 위한여 알고리즘을 단순화하였다. 이 알고리즘은 카메라 이동에 의한 영상의 모든 점들의 움직임은 깊이 정보의 종속적이라는 사실에 기반을 두고 있다. 불록매칭 알고리즘에 기반을 둔 전역 움직임 탐색에 의한 움직임 벡터를 추출한 후, 카메라 회전과 확대/축소에 관한 카메라 움직임 보상을 실행하고 깉이 정보 추출 과정이 전개된다. 깊이 정보 추출 과정은 단안 영상에서 객체의 이동처리를 분석하여 움직임 벡터를 구하고 프레임내의 모든 픽셀에 대한 평균 깊이를 계산한 후, 평균 깊이에 대한 각 블록의 상대적 깊이를 산출하였다. 모의 실험 결과 전경과 배경에 속하는 영역의 깊이는 인간 시각 체계가 인식하는 상대적인 깊이와 일치한다는 것을 보였다.