• Title/Summary/Keyword: 단상 PWM 컨버터

Search Result 77, Processing Time 0.02 seconds

Instantaneous Control of Single Phase AC/DC PWM Parallel Converters (단상 AC/DC PWM 병렬 컨버터의 순시 제어)

  • Won June-Hee;Cheong Dal-Ho;Oh Jae-Yoon
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.356-359
    • /
    • 2001
  • In this paper, the new control algorithm is proposed that compensates instantaneously the active and reactive components of the input currents by the synchronous d,q axis conversion of a single-phase current in controlling the single-phase AC/DC parallel converters for a high speed train. The leakage inductance of a transformer was used as a boost inductance and the ripple of a transformer's primary current was reduced considerably by the parallel operation of the two converters with a proper switching phase-shift. The stable and fast control response characteristic is certificated by a simulation.

  • PDF

Simulation of three Phase PWM Boost converter (단상제어형 3상 PWM 승압용 컨버터의 시뮬레이션)

  • Kang, W.J.;Kim, S.D.;Chun, J.H.;Lee, K.S.;Suh, K.Y.;Lee, H.W.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07f
    • /
    • pp.2668-2670
    • /
    • 1999
  • In the past, the PWM converter had a large switching loss by hard switching and difficult to high frequency operation. The resonance converter to decrease the switching loss and EMI is required the frequency control and needed to reduce the voltage or current stress at each parts. So, this paper propose the 3-phase boost converter and the method to compensated input power factor by control the amplitude - an instantaneous value of the DC inductor current -and control the switching frequency that a modulation error by the ripple of the DC inductor current. The proposed 3-phase PWM boost converter of single phase control type can takes higher capacity and compensate the power factor by using Feed back controller at each phase for the existing 3-phase bridge rectifier type. Moreover the 3-phase full bridge type using the rectifier at each 3-phase circuit will be small size reactor and compensate input power factor by minimize harmonic components of each phase.

  • PDF

Single-Phase Dynamic Voltage Restorer with a Quasi Z-source Topology (Quasi Z-소스 토폴로지를 갖는 단상 동적 전압 보상기)

  • Lee, Ki-Taeg;Jung, Young-Gook;Lim, Young-Cheol;Kim, Kwang-Heon
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.460-461
    • /
    • 2010
  • 본 논문에서는 Quasi Z-소스 토폴로지의 동적 전압 보상기를 제안한다. 제안된 시스템은 Quasi Z-소스 PWM 교류-교류 컨버터를 기반으로 하고 있고 기존의 Z-소스 교류-교류 컨버터의 장점 역시 가지고 있으면서, 또한 입력 단과 출력 단이 공통 접지이며 연속적인 입력전류(CCM)로 동작하는 특징이 있다. 전원의 Sag와 Swell을 검출하기 위하여 피크치 검출기법이 사용되었으며, 출력전압의 총고조파왜형률 %THD를 분석하였다. 제안된 시스템은 65% 전압 Sag와 30% 전압 Swell이 발생하여도 부족전압과 과전압에 대한 보상을 하였으며, 또한 부하전압을 정격전압의 정현파로 유지 할 수 있었다. 실험결과를 통하여 본 연구의 타당성을 입증하였다.

  • PDF

Development of the 3kW Class Low Cost Fuel Inverter System for Residential Power Generation - DC-DC Converter Design and Control for Fuel Cell System (3kW급 주택용에 사용되는 저가의 연료전지용 인버터 시스템 - 연료전지 시스템용 DC-DC 컨버터 설계 및 제어)

  • Lee, S.H.;Cho, M.C.;Hwang, G.D.;Mun, S.P.;Suh, K.Y.;Kwon, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1161-1162
    • /
    • 2006
  • 본 논문은 3[kW]급 연료전지와 연료전지의 저전압$[40{\sim}60[Vdc]$)을 승압(380vdc)하기 위한 풀-브리지 DC-DC 컨버터, 그리고 승압된 링크전압을 교류 상용전압(220[Vac], 60[Hz)으로 변환하기위한 단상 풀-브리지 인버터로 구성된 연료전지 발전용 전력변환시스템 중 연료전지 시스템용 DC-DC 컨버터를 제안하였다. 제안한 연료전지 시스템용 DC-DC 컨버터는 변압기 2차측에 배전류 정류회로를 삽입하여 기존의 고주파 변압기 보다 간단하면서 무게 및 부피를 줄였다. 그리고 위상 천이 PWM 제어로 출력 전압을 가변시켜 영전압 스위칭을 달성 함으로써 스위칭 손실을 줄였으며. 효율을 95%이상 달성 하였다.

  • PDF

A Single-Phase Quasi Z-Source Dynamic Voltage Restorer(DVR) (단상 Quasi Z-소스 동적전압보상기(DVR))

  • Lee, Ki-Taeg;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.327-334
    • /
    • 2010
  • This paper deals with a single-phase dynamic voltage restorer(DVR) with a quasi Z-source topology. The proposed system based on a single-phase quasi Z-source PWM ac-ac converter which have features such as the input voltage and output voltage are sharing ground, and input current operates in continuous current mode(CCM). For the detection of voltage sag-swell, peak voltage detection method is applied. Also, the circuit principles of the proposed system are described. During the 60% severe voltage sag and 30% voltage swell, the proposed system controls the adding or missing voltage and maintains the rated voltage of sinusoidal waveform at the terminals of the critical loads. Finally, PSIM simulation and experimental results are presented to verify the proposed concept and theoretical analysis.

The Characteristics Analysis and Design of High-Frequency Isolated Type ZVZCS PS-PWM DC-DC Converter with Fuel Cell Generation System (연료전지 발전시스템에 적용된 고주파 절연형 ZVZCS PS-PWM DC-DC 컨버터의 설계 및 특성 해석)

  • Suh, Ki-Young;Mun, Sang-Pil;Kim, Dong-Hun;Lee, Hyun-Woo;Kwon, Soon-Kurl
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.21-28
    • /
    • 2006
  • In this paper, the proposed full-bridge high frequency isolated zoo voltage and zero current switching phase shifted pulse width modulation(ZVZCS PS-PWM)DC-DC converter among fuel cell generation system consist of 1.2[kW] fuel cell of Nexa Power Module, full-bridge DC-DC converter to boost the fuel cell low voltage($28{\sim}43[%]$) to 380[VDC] and a single phase full-bridge inverter is implemented to produce AC output(220[VAC], 60[Hz]). A tapped inductor filter with freewheeling diode is newly implemented in the output filter of the proposed full-bridge high frequency isolated ZVZCS PS-PWM DC-DC converter to suppress circulating current under the wide output voltage regulation range, thus to eliminate the switching and transformer turn-on/off over-short voltage or transient phenomena. Besides the efficiency of $93{\sim}97[%]$ is obtained over the wide output voltage regulation ranges and load variations.

Development of 1.2[kW]Class Fuel Cell Power Conversion System (1.2[kW]급 연료전지용 전력변환장치의 개발)

  • Suh, Ki-Young;Kim, Chil-Ryong;Cho, Man-Chul;Kim, Jung-Do;Yoon, Young-Byun;Kim, Hong-Sin;Park, Do-Hyung;Ha, Sung-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.117-125
    • /
    • 2007
  • Recently, a fuel cell with low voltage and high current output characteristics is remarkable for new generation system. It needs both a DC-DC step-up converter and DC-AC inverter to be used in fuel cell generation system. Therefor, this paper, consists of an isolated DC-DC converter to boost the fuel cell voltage 380[VDC] and a PWM inverter with LC filter to convent the DC voltage to single-phase 220[VAC]. Expressly, The fuel cell system which it proposes DC-DC the efficient converter used PWM the phase transient control law and it depended to portion resonance ZVS switching, loss peek voltage and electric current of realization under make schedule, switching frequency anger and the switch reduction. And mind benevolence it sprouted 2 in stop circuit and it added and a direct current voltage and the electric current where the ingredient is reduced in load side ripple stable under make whom it will be able to supply. Besides the efficiency of 92[%]is obtained over the wide output voltage regulation ranges and load variations. Also, under make over together the result leads simulation and test, the propriety confirmation.

A Study on Control and Compensating Characteristics of Active Series Voltage Compensator with Harmonic Current Compensating Capability (고조파전류 보상 기능을 갖는 능동 직렬 전압보상기의 제어 및 보상특성에 관한 연구)

  • 이승요;김홍성;최규하;신우석;김홍근
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.5
    • /
    • pp.484-492
    • /
    • 2000
  • In this paper, a voltage compensator with harmonic current compensating capability is studied and its compensating characteristics are analyzed. Like the hybrid active power filter, the proposed system is composed of parallel LC passive filter and series PWM converter connected to power line through series transformer. It is shown that the compensation of harmonic current generated due to nonlinear loads such as diode rectifier and instantaneous voltage compensation of the source are performed through the proposed compensating system. The operating principle of the proposed system is described through a single-phase equivalent circuit and the control strategy is suggested on the d-q rotating reference frame of the 3-phase system. Also, experiment is carried out to verify compensating characteristics of the proposed system.

  • PDF

An Improved Feed-Forward Controller for the Parallel Operation of a Single-Phase PWM Converter in High-Speed Trains (고속철도용 단상 PWM 컨버터의 병렬운전을 위한 개선된 전향제어기)

  • Park, Byoung-Gun;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.226-234
    • /
    • 2010
  • This paper proposes an improved feed-forward controller that calculates the gain value by estimating the changed boost inductance in practical operating condition of transformer. The boost inductance is estimated by the measurement of input current and voltage. The estimated boost inductance is optimized by the least square method. The proposed feed-forward controller can be achieved the robust control through the gain value calculating the estimated boost inductance despite of the changed condition of transformer and can minimize the interference phenomenon by reducing the harmonics of input current. The validity of proposed technique is verified through the simulation and experiment.

Converter Control for APU of 8200 Series Electric Locomotive using Advanced Single Phase PLL Control Method (진보된 단상 PLL 제어방법을 이용한 8200호대 전기기관차 보조전원장치용 컨버터 제어)

  • Jung, No-Geon;Lee, Eul-Jae;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.211-215
    • /
    • 2017
  • The APF (All Pass Filter) method that utilizes the computational power of the controller is most commonly used. However, since the calculation of the filter coefficient is complicated, the calculation is carried out in advance. It is difficult to apply it to the frequency fluctuation environment because the coefficient value is fixed. In this paper, a new control method of single phase PLL that can be usefully used in PWM converter device for electric railway was explained. Comparison and examination of similarities and differences between the conventional APF method PLL controller method and the newly proposed modified MA filter method PLL technique were performed. The possibility of implementation of the modified MA filter method through computer simulation was analyzed. In conclusion, the method proposed as the conclusion was applied to the APU(Auxiliary Power System) of 8200 Series Electric Locomotive and its usefulness was confirmed.