Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.1
/
pp.26-32
/
2018
The protein secondary structures are important information for studying the evolution, structure and function of proteins. Recently, deep learning methods have been actively applied to predict the secondary structure of proteins using only protein sequence information. In these methods, widely used input features are protein profiles transformed from protein sequences. In this paper, to obtain an effective protein profiles, protein profiles were constructed using protein sequence search methods such as PSI-BLAST and HHblits. We adjust the similarity threshold for determining the homologous protein sequence used in constructing the protein profile and the number of iterations of the profile construction using the homologous sequence information. We used the protein profiles as inputs to convolutional neural networks and recurrent neural networks to predict the secondary structures. The protein profile that was created by adding evolutionary information only once was effective.
Proceedings of the Korean Information Science Society Conference
/
2004.04b
/
pp.268-270
/
2004
주어진 셀이나 조직에 발현된 단백질 프로파일의 구조적인 분석을 다루는 단백질체학(Proteomics) 연구에 있어서, 질병에 대한 마커 단백질(marker proteins)을 도출(identification)하는 것은 핵심 논점 중 하나이다. 수십 개의 샘플로부터 추출한 셀이나 조직 내에는 수많은 단백질이 포함되어 있으며, 존재하는 단백질의 질병에 의한 발현량(expression level) 변화 및 임상 특성에 의한 영향을 분석하기 위해서 데이터베이스와 데이터 마이닝 기술의 활용이 효과적이다. 본 논문에서는 질병 일 임상 특성에 따른 단백질의 발현량 변화를 분석하기 위한 OLAP 데이터 큐브(Data cube)의 응용 방법과 단백질 데이터의 분석에 적합한 척도(measure)를 제안하고, 유효성을 보인다.
Since protein subcellular location and biological function are highly correlated, the prediction of protein subcellular localization can provide information about the function of a protein. In order to enhance the prediction performance, external information other than amino acids sequence information is actively exploited in many researches. This paper compares the prediction capabilities resided in amino acid sequence similarity, protein profile, gene ontology, motif, and textual information. In the experiments using PLOC dataset which has proteins less than 80% sequence similarity, sequence similarity information and gene ontology are effective information, achieving a classification accuracy of 94.8%. In the experiments using BaCelLo IDS dataset with low sequence similarity less than 30%, using gene ontology gives the best prediction accuracies, 93.2% for animals and 86.6% for fungi.
Proceedings of the Korea Information Processing Society Conference
/
2016.10a
/
pp.583-586
/
2016
단백질과 RNA의 상호작용 데이터가 대량으로 늘어남에 따라, 단백질과 RNA의 결합부위를 예측하는 계산학적인 방법들이 많이 개발되고 있다. 하지만, 많은 계산학적인 방법들은 단백질에서 단백질과 RNA 결합부위를 예측한다는 한계점이 있었다. 본 논문에서는 RNA와 단백질의 서열정보를 모두 사용하여, 단백질과 결합하는 RNA 결합부위를 예측하는 기법과 그 결과를 논한다. WEKA random forest(http://www.cs.waikato.ac.nz/ml/weka/)를 이용하여 예측 모델을 개발하였고, RNA 서열의 서열 프로파일, 서열 composition, 결합 상대방의 단백질의 특성 등을 특정으로 표현하였다. Random forest 기법을 사용한 cross validation의 결과로서 1:1 모델에서 제일 높은 성능인 92.4% sensitivity, 92.0% specificity, 92.2% accuracy를 보였고, independent test에서는 72.5% sensitivity, 90.0% specificity, 2.1% accuracy를 보였다.
2-dimensional electrophoresis(2DE) is a separation technique to identify proteins contained in a sample. However, the image is very sensitive to its experimental conditions as well as the quality of scanning. In order to adjust the possible variation of spots in a particular image, a user should manually annotate landmark spots on each gel image to analyze the spots of different images together. However, this operation is an error-prone and tedious job. This thesis develops an automated method of extracting the landmark spots of an image based on landmark profile. The landmark profile is created by clustering the previously identified landmarks of sample images of the same type. The profile contains the various properties of clusters identified for each landmark. When the landmarks of a new image need to be fount all the candidate spots of each landmark are first identified by examining the properties of its clusters. Subsequently, all the landmark spots of the new image are collectively found by the well-known optimization algorithm $A^*$. The performance of this method is illustrated by various experiments on real 2DE images of mouse's brain-tissues.
Proceedings of the Korean Information Science Society Conference
/
2002.10c
/
pp.322-324
/
2002
최근에 지역적으로 분산된 컴퓨팅 자원을 어디에서나 활용할 수 있도록 해주는 GRID가 많은 주목을 받고 있다. 특히 단백질 분자모사나 고에너지 물리학 분야 둥과 같이 매우 많은 계산을 요구하는 분야에서는 GRID를 통해서 계산 자원을 제공받을 수 있다. GRID에서 제공되는 계산 능력을 잘 활용하기 위해서 각 분야에서 사용되는 어플리케이션을 병렬화 할 수도 있지만 이미 계산 방법이나 결과가 검증되어 있는 기존의 패키지를 활용하는 것도 매우 중요하므로 기존 패키지에 의한 직렬 또는 지역적으로 병렬인 프로세스를 매우 많이 생성하여 GRID를 채우는 것도 한 방법이라 하겠다. 일반적으로 이와 같은 패키지는 기동할 때에 패러미터 파일을 참조하게 되고 그 계산 결과는 매우 큰 파일로 출력이 되는데 본 논문에서는 대용량 파일에 의해서 프로세스간에 동기화 및 통신을 이루어야할 때 발생하는 문제를 해결하는 방안을 제시한다. 동기화와 통신을 동시에 다루어야 하므로 Linda 개념을 도입하였으며 기존 Linda에서는 Tuple Space안에서 대용량 파일 처리를 고려하기 어려우므로 이에 대한 해결책을 제안하였다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.20
no.9
/
pp.1816-1821
/
2016
Protein secondary structure is important for the study of protein evolution, structure and function of proteins which play crucial roles in most of biological processes. This paper try to effectively extract protein secondary structure information from the large protein structure database in order to predict the protein secondary structure of a query protein sequence. To find more remote homologous sequences of a query sequence in the protein database, we used PSI-BLAST which can perform gapped iterative searches and use profiles consisting of homologous protein sequences of a query protein. The secondary structures of the homologous sequences are weighed combined to the secondary structure prediction according to their relative degree of similarity to the query sequence. When homologous sequences with a neural network predictor were used, the accuracies were higher than those of current state-of-art techniques, achieving a Q3 accuracy of 92.28% and a Q8 accuracy of 88.79%.
Soybean is a crop with high-quality of protein and oil, and it is one of the most widely used genetically modified (GM) crops in the world today. In South Korea, Kwangan is the most utilized variety as a parental line for GM soybean development. In this study, untargeted LC-MS metabolomic approaches were used to compare metabolite profiles of Kwangan and three other commercial varieties cultivated in Gunwi and Jeonju in 2020 year. Metabolomic studies revealed that the 4 soybean varieties were distinct based on the partial least squares-discriminant analysis (PLS-DA) score plots; 18 metabolites contributed to variety distinction, including phenylalanine, isoflavones, and fatty acids. All varieties were clearly differentiated by location on the PLS-DA score plot, indicating that the growing environment is also attributable to metabolite variability. In particular, isoflavones and linolenic acid levels in Kwangan were significantly lower and higher, respectively compared to those of the three varieties. It was discussed that it might need to include more diverse conventional varieties as comparators in regard to metabolic characteristics of Kwangan for the assessment of substantial equivalence biogenetically engineered soybeans in a Kwangan-variety background.
Sasa quelpaertensis Nakai leaf has been used as a folk medicine for the treatment of gastric ulcer, dipsosis, and hematemesis based on its anti-inflammatory, antipyretic, and diuretic characteristics. We have previously reported the procedure for deriving a phytochemical-rich extract (PRE) from S. quelpaertensis and how PRE and its ethyl acetate fraction (EPRE) exhibits an anticancer effect by inducing apoptosis in various gastric cancer cells. To explore the molecular targets involved in this apoptosis, we investigated the mRNA and microRNA profiles of EPRE-treated SNU-16 human gastric cancer cells. In total, 2,875 differentially expressed genes were identified by RNA sequencing, and gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that the EPRE-modulated genes are associated with apoptosis, mitogen-activated protein kinase, inflammatory response, tumor necrosis factor signaling, and cancer pathways. Subsequently, protein-protein interaction network analysis confirmed interactions among genes associated with cell death and apoptosis, and 27 differentially expressed microRNAs were identified by further sequencing. Here, GO and KEGG pathway analysis revealed that EPRE modified the expression of microRNAs associated with the cell cycle and cell death, as well as signaling of tropomyosin-receptor-kinase receptor, transforming growth factor-b, nuclear factor kB, and cancer pathways. Taken together, these results provide insight into the mechanisms underlying the anticancer effect of EPRE.
Glycans are attached to proteins as in glycoproteins and proteoglycans. They are found on the exterior surface of cells. O- and N-linked glycans are very common in eukaryotic cells but may also be found in prokaryotes. The interaction of cell surface glycans with complementary glycan binding proteins located on neighboring cells, other cell types, pathogens like virus, or bacteria is crucial in biologically and biomedically important processes like pathogen recognition, cell migration, cell-cell adhesion, development, and infection. Their implication in pathological condition, suggests an important role for glycans as disease markers. In addition, a great amount of research has been shown that appropriate glycosylation of a recombinant therapeutic protein is critical for product solubility, stability, pharmacokinetics and pharmacodynamics, bioactivity, and safety. Besides, cancer-associated glycosylation changes often involve sialic acid in glycan branch which play important roles in cell-cell interaction, recognition and immunological response. This review aims at giving a comprehensive overview of the glycan's biological function and describing the relevance among the glycosylation, disease diagnosis and treatment methods. Furthermore, the high-throughput analytic methods available to measure the profile changing patterns of glycan in the blood serum as well as possible underlying biochemical mechanisms.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.