Acknowledgement
본 연구는 농촌진흥청 고유기관사업(과제번호: PJ01609702)의 연구비 지원에 의하여 수행되었습니다.
References
- ISAAA (2021) Pocket K No. 16: Biotech Crop Highlight in 2019. International Service for the Acquisition of Agri-biotech Applications. Updated May 2021 http://www.isaaa.org/kc
- Lee KJ, Park HJ, Yi BY, Lee KR, Kim MS, Woo HJ, Jin YM, Kwon SJ (2008) Development of herbicide tolerant soybean using Agrobacterium thumfaciens. J Plant Biotechnol 35: 69-74. doi: 10.5010/JPB.2008.35.1.069
- Jeon EH, Chung Y-S (2009) Development of genetic transformation method of Korean soybean. J Plant Biotechnol 36: 344-351. doi: 10.5010/JPB.2009.36.4.344
- Kim DG, Kantayos V, Kim DK, Park HG, Kim HH, Rha ES, Lee SC, Bae CH (2016) Plant regeneration by in vitro tissue culture in Korean soybean (Glycine max L.). Koren J Plant Res 29: 143-153. doi: 10.7732/kjpr.2016.29.1.143
- Cho C, Kim D-Y, Choi M-S, Jin M, Seo M-S (2021) Efficient isolation and gene transfer of protoplast in Korean soybean (Glycine Max (L.) Merr.) cultivars. Korean J Breed Sci 53: 230-239. doi: 10.9787/KJBS.2021.53.3.230
- Seo M-S, Cho C, Jeong N, Sung S-K, Choi M-S, Jin M, Kim D-Y (2021) In vitro tissue culture frequency and transformation of various cultivars of soybean (Glycine max (L.) Merr.). Korean J Plant Res 34: 278-286. doi: 10.7732/kjpr.2021.34.4.278
- Yeom WW, Kim HY, Lee K-R, Cho HS, Kim J-Y, Jung HW, Oh S-W, Jun SE, Kim HU, Chung Y-S (2020) Increased production of α-linolenic acid in soybean seeds by overexpressing of Lesquerella FAD3-1. Front Plant Sci 10: 1812. doi: 10.3389/fpls.2019.01812
- Kim M-J, Kim JK, Kim HJ, Pak JH, Lee J-H, Kim D-H, Lee D-H, Choi HK, Ho WJ, Lee J-D, Chung Y-S, Ha S-H (2012) Genetic modification of the soybean to enhance the β-carotene content through seed-specific expression. Plos ONE 7: e48287. doi: 10.1371/journal.pone.0048287
- Kim HJ, Cho HS, Pak JH, Kwon T, Lee J-H, Kim D-H, Lee DH, Kim C-G, Chung Y-S(2018) Confirmation of drought tolerance of ectopically expressed AtABF3 gene in soybean. Mol Cells 4: 413-422. doi: 10.14348/molcells.2018.2254
- Cho HS. Lee DH, Jung HW, Oh S-W. Kim HJ, Chung Y-S (2019) Evaluation of yield components from transgenic soybean overexpressing chromatin architecture-controlling ATPG8 and ATPG10 genes. Plant Breed Biotech 7: 34-41. doi: 10.9787/PBB.2019.7.1.34
- Song JH, Shin GS, Kim HJ, Lee SB, Moon JY, Jeong JC, Choi H-K, Kim IA, Song HJ, Kim CY, Chung Y-S (2022) Mutation of GmIPK1 gene using CRISPR/Cas9 reduced phytic acid content in soybean seeds. Int J Mol Sci 23: 10583. doi: 10.3390/ijms231810583
- OECD (1993) Safety evaluation of foods derived by modern biotechnology; Concepts and Principles. Organization of Economic Cooperation and Development (OECD), Paris, France
- Codex Alimentarius (2003) Guideline for the donduct of food safety assessment of foods derived from recombinant-DNA plants. CAC/GL45-2003, Geveva
- Oh S-W, Kim E-H, Lee S-Y, Baek D-Y, Lee S-G. Kang H-J. Chung Y-S. Park S-K, Ryu T-H (2021) Compositional equivalence assessment of insect-resistant genetically modified rice using multiple statistical analyses. GM Crops & Food 12: 303-314. doi: 10.1080/21645698.2021.1893624
- Christ B. Pluskai T, Aubry S, Weng JK (2018) Contribution of untargedted metabolomics for future assessment of biotech crops. Trends Plant Sci 24: 1047-1056. doi: 10.1016/j.tplants.2018.09.011
- Fraser PD, Aharoni A, Hall RD, Huang S, Giovannoni JJ, Sonnewald U, Fernie AR (2020) Metabolomics should be deployed in the identification and characterization of gene-edited crips. Plant J 102: 897-902. doi: 10.1111/tpj.14679
- Zhou J, Ma C, Xu H, Yuan K, Lu X, Zhu Z, Wu Y, Xu G (2009) Metabolic profiling of transgenic rice with cry1Ac and sck genes: an evaluation of unintended effects at metabolic level by using GC-FID and GC-MS. J Chromatogr B 877: 725-732. doi: 10.1016/j.jchromb.2009.01.040
- Clarke JD, Alexander DC, Ward DP, Ryals JA, Mitchell MW, Wulff JE, Guo L (2013) Assessment of genetically modified soybean in relation to natural variation in the soybean seed metabolome. Scientific Rep 3: 6
- Wang XJ, Zhang X, Yang JT, Wang ZX (2018) Effect on transcriptome and metabolome of stacked transgenic maize containing insecticidal cry and glyphosate tolerance epsps genes. Plant J 93: 1007-1016. doi: 10.1111/tpj.13825
- John KMM, Natarajan S, Luthria DL (2016) Metabolite changes in nine different soybean varieties grown under field and greenhouse conditions. Food Chem 211: 347-355. doi: 10.1016/j.foodchem.2016.05.055
- Lee SJ, Yan W, Ahn JK, Chung IM (2003) Effects of year, site, genotype, and their interactions on various soybean isoflavones. Field Crops Res 81: 181-192. doi: 10.1016/S0378-4290(02)00220-4
- Kim YJ, Park YJ, Oh S-D, Yoon JS, Kim JG, Seo J-S, Park J-H, Kim C-G, ParkS-Y, ParkS-K, Choi M-S, Kim JK (2022) Effects of genotype and environment on the nutrient and metabolic profiles of soybeans genetically modified with epidermal growth factor or thioredoxin compared with conventional soybeans. Ind Crops Prod 175: 114229. doi: 10.1016/j.indcrop.2021.114229
- Gu S, Son Y, Park JY, Choi S-G, Lee M, Kim H-J (2019) Analysis of the seed metabolite profiles and antioxidant activity of perilla variation. Korean J Food Sci and Technol 51: 193-199. doi: 10.9721/KJFST.2019.51.3.193
- Kudou S, Flenry Y, Welti D, Magnolato D, Uchida T, Kitamura K, Okubo K (1991) Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Agric Biol Chem 55: 2227-2233. doi: 10.1080/00021369.1991.10870966
- Kim HM, Jang EK, Gwak BS. Hwang TY, Yun GS, Hwang SG, Jeong HS, Kim HS (2018) Variation of isoflavone contents and classification using multivariate analysis in Korean soybean varieties released from 1913 to 2013. Korean J Breed Sci 50: 50-60. doi: 10.9787/KJBS.2018.50.1.50
- Yoon H, Yi J, Desta K, Shin M-J, Lee Y, Lee S. Wang X, Choi Y-M, Lee S (2021) Yearly variation of isoflavone composition and yield-related traits of 35 Korean soybean germplasm. Korean J Breed Sci 53: 411-423. doi: 10.9787/KJBS.2021.53.4.411
- Hemingway J, Eskandari M, Rajcan I (2015) Genetic and environmental effects on fatty acid composition in soybeans with potential use in the automotive industry. Crop Sci 55: 658-668. doi: 10.2135/cropsci2014.06.0425
- Yoshiki Y, Kudou S, Okubo K (1998) Relationship between chemical structures and biological activities of triterpenoid saponins from soybean. Biosci Biotechnol Biochem 62: 2291-2299. doi: 10.1271/bbb.62.2291
- Berhow MA, Kong SB, Vermillion KE, Duval SM (2006) Complete quantification of group A and group B soyasaponins in soybeans. J Agric Food Chem 54: 2035-2044. doi: 10.1021/jf053072o
- Nam J-H, Jeong J-C, Yoon Y-H, Hong S-Y, Kim S-J, Jin Y-I, Jee S-N, Kim H-S, Ok H-C, Nho C-W, Pan C-H (2012) Comparison of soyasaponin group B contents in soybean seed by different cultivars and regional background. Korean J Plant Res 25: 394-400. doi: 10.7732/kjpr.2012.25.4.394
- Seguin P, Chennupati P, Tremblay G, Liu W (2014) Crop management, genotypes, and environmental factors affect soyasaponin B concentration in soybean. J Agric Food Chem 62: 7160-7165. doi: 10.1021/jf500966t
- Hong S-Y, Kim S-J, Sohn H-B, Kim Y-H, Cho K-S (2018) Comparison of isoflavone content in 43 soybean varieties adapted to highland cultivation areas. Korean J Breed Sci 50: 442-452. doi: 10.9787/KJBS.2018.50.4.442
- Tsukamoto C, Shimada S, Igita K, Kudou S, Kokubun M, Okubo K, Kitamura K (1995) Factors affecting isoflavones content in soybean seeds: changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. J Agric Food Chem 43: 1184-1192. doi: 10.1021/jf00053a012
- Lozovaya VV, Lygin AV, Ulanov AV, Nelson RL, Dayde J, Widholm JM (2005) Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Sci 45: 1934-1940. doi: 10.2135/cropsci2004.0567
- OECD (2012) Revised Consensus Document on Compositional Considerations for New Varieties of Soybean [Glycine max (L.) Merr]: Key Food and Feed Nutrients, Anti-nutrients, Toxicants and Allergens. Series on Harmonization of Regulatory Oversight in Biotechnology No. 25, OECD Publishing, Paris