• Title/Summary/Keyword: 단면복구

Search Result 43, Processing Time 0.027 seconds

Numerical Analysis and Laboratory Experiment of Rapid Restoration of Underground Cavity Using Expansive Material without Excavation (팽창재료를 이용한 지하공동의 비개착식 긴급복구 공법에 대한 실내실험 및 수치해석)

  • Lee, Kicheol;Choi, Byeon-Ghyun;Park, Jongho;Kim, Dongwook
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.1
    • /
    • pp.55-64
    • /
    • 2018
  • The purpose of this study is to evaluate the suitability of emergency underground cavity restoration method filling cavity with expansive material based on numerical analysis. For the numerical analysis, experiments were conducted to evaluate properties of expansive material. Based on the measured expansion pressure of the expansive material from the experiment, behavior of underground cavity restoration with various cavity dimensions (variation of height and width of rectangular-shape cavity) was numerically assessed. As a result of analysis, the vertical displacements of the top and bottom of cavity were significantly influenced by the cavity width and lateral displacements of cavity sides were highly dependent on cavity height. These vertical and lateral displacements were increased with increasing expansion pressure of expansive material. Also, when the expansion pressure was applied, the vertical displacement of the upper surface layer of the road was less dependent on cavity height, and was greatly influenced by cavity width.

An Experimental Study on the Durability and Load Carrying Capacity of RC Structure Repair System Using FR-ECC (고인성 내화보수모르터(FR-ECC)를 활용한 RC 구조물 보수공법의 내구성능 및 내하력에 관한 실험적 연구)

  • Kim, Jeong Hee;Lim, Seung Chan;Kim, Jae Hwan;Kwon, Yung Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.2
    • /
    • pp.75-86
    • /
    • 2012
  • This paper presents some research results on the shrinkage characteristics and frost resistance before and after cracking of FR-ECC(Fire Resistance-Engineered Cementitious Composite). Also, a waterstop performance and exfoliating resistance of multi-layer lining specimens using FR-ECC and flexural performance of beam member by repaired FR-ECC are estimated in this paper. Experimental results indicate that the plastic shrinkage crack and length change ratio of FR-ECC have been reduced as compared with that of the existing repair mortar, and that its crack resistance on the dry shrinkage is improved under the confining stress. As well as FR-ECC has been great in the frost resistance and its tensile properties under the cracked state have been not reduced by freezing and thawing reaction. In addition, beam member by repaired FR-ECC have been increased in the flexural properties such as initial crack moment, yeild moment, and its crack width has been controled in a stable by the frexural failure.

Performance Evaluation of Various Concrete Repair Materials to Corrosion Prevent of Rebar (철근의 부식 방지를 위한 다양한 콘크리트 보수재료들의 성능평가)

  • Tae-Kyun Kim;Jong-Sub Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.458-466
    • /
    • 2023
  • Structures in our surroundings deteriorate over time due to environmental and chemical factors, resulting in a decrease in their performance. The primary causes of degradation in concrete structures are carbonation, salt damage, and freeze-thaw cycles. Various maintenance methods exist to address these degradation issues. However, research and technological development for existing maintenance methods have been ongoing, but the accuracy and effectiveness of repair materials and techniques have not been extensively validated. Therefore, in this study, we conducted a material performance evaluation of various manufacturers' repair materials. Based on this evaluation, we applied corrosion inhibitors and epoxy, which are the methods most closely related to crack repair, to assess the durability performance against carbonation, salt damage, and freeze-thaw cycles. The results show approximately a two-fold performance improvement against carbonation and salt damage, and a 5% enhancement in repair performance against freeze-thaw cycles. Thus, it is considered effective in preventing rebar corrosion when appropriate maintenance is carried out according to environmental and chemical factors during structural repairs.

An Experimental Study on the Durability Evaluation of Polymer Cement Restoration Materials for Deteriorated Reinforced Concrete Structures (성능저하된 철근콘크리트구조물 폴리머시멘트계 보수용 단면복구재의 내구성 평가에 관한 실험적 연구)

  • Kim, Moo-Han;Kim, Jae-Hwan;Cho, Bong-Suk;Park, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.123-130
    • /
    • 2006
  • The duties of the restorative materials are to bear up against stress and to protect reinforcement corrosion. So the restorative materials are estimated by various kinds of strength, permeability and etc, But, in case of existing performance evaluation of restorative materials, because various deterioration factors are separately acted, the system of performance evaluation is different from that of combined deterioration of real structure and it is difficult to evaluate the exact performance of restorative materials. In this study, to evaluate Performance of restorative materials, we compare their korea standard properties in terms of compressive and bending strength and permeability of water and air with real durability for carbonation, salt damage and actual reinforcement corrosion like ratio of corrosion area. weight reduction and corrosion velocity of steel bar under environment of combined deterioration. The results showed that strength and permeability of restorative materials are similar but their resistance to carbonation, salt damage and actual reinforcement corrosion are very different.

An Experimental study on the Fundamental Properties of Restorative Mortar Spread with Liquefied Antibiotics for Repair of Sewer Concrete (액상 항균제를 도포한 단면복구용 모르타르의 기초물성에 관한 실험적 연구)

  • Lee Dong-Heck;Jang Jae Bong;Cho Bong-Suk;Kim Jae-Hwan;Lee Byoung-Ky;Kim Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.305-308
    • /
    • 2005
  • The sulfuric acid may react with the hardened cement paste and originate expansive products which can induce swelling and disaggregation of concrete. The purpose of this study is to estimate the antibacterial performance of antibiotics and the effect of absorbed condition of restorative mortar, the number of coating times and coating contents with antibiotic on the fundamental properties of restorative mortar spead with antibiotics. Also, testing items such as bonding strength, abrasion contents, contents of water absorption, contents of air permeability was tested to estimate the fundamental properties in this study. In results, the novellus bacillus inhabiting in sewer concrete structures was restrained by antibiotics developed in this study. And bonding strength of restorative mortar spread with antibiotics was similla to that of plain mortar. But, resistance to abrasion, water absorption and air permeability of restorative mortar spread with antibiotics was superior to that of plain mortar.

  • PDF

AHP Based-Optimal Selection of Concrete Patching Repair Materials Considering Qualitative Evaluation Criteria (정성적 평가항목을 고려한 콘크리트 보수용 단면복구재료의 AHP 기반 최적선정 모델링)

  • Do, Jeong-Yun;Song, Hun;Soh, Yang-Seob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.965-968
    • /
    • 2008
  • This study is interested in modeling the selection of optimal repair materials in view of the qualitative evaluation. In order to architecting the evaluation model of various repair alternatives, Analytical hierarchy process techniques was applied to this study. It is composed of aesthetics, easy-to-application, economical efficiency, and environment-friendly properties in upper level. Among the qualitative evaluation items, Environment-friendly properties and execution cost included in economical efficiency is highly weighted. It was concluded that the evaluation model by this study is very useful to choose the best alternative among various repair materials.

  • PDF

Evaluation for Corrosion Prevention Properties of Steel Bar Corrosion Repair Method Composed of Primer and Section Restoration Mortar with Corrosion Inhibitor (방청제 혼입 프라이머 및 단면복구모르타르를 사용한 철근부식보수공법의 철근방청성능 평가)

  • Cho Bong Suk;Jang Jae Bong;Jang Jong Ho;Kim Yong Ro;Kang Suk Pyo;Kim Moo Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.793-796
    • /
    • 2004
  • In domestic, various repair materials and method systems to keep up with these reinforced concrete deteriorated due to salt damage, carbonation. chemical decay et. being developed and applied. However, present polymer cement mortar applied to section restoration system cause the problem of long-term working and economica] efficiency. because that is divided into two process of liquid corrosion prevention agent and polymer cement mortar. In this background, accelerated test with due regard to $3\%$ NaCl soaking and autoclave cure was performed to confirm steel bar corrosion prevention properties of polymer cement mortar mixed with corrosion prevention agent of powdered type. In conclusion. we confirmed application possibility and excellency of steel bar corrosion prevention properties of polymer cement mortar mixed with corrosion prevention agent of powdered type comparing general polymer cement mortar applied to section restoration system of present study.

  • PDF

A study on hydraulic stability assessment based on two-dimensional model in river flood plain (2차원 모형 기반 하천 홍수터에서의 수리적 안정성 평가 연구)

  • Ku, Tae Geom;Song, Chang Geun;Park, Yong Sung;Kim, Young Do
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.112-112
    • /
    • 2017
  • 하천은 크게 하도와 홍수터 그리고 제방으로 나눌 수 있으며, 최근 대하천 및 중 소규모 하천의 홍수터 공간을 활용하여 인공습지, 체육시설 및 공원 등과 같은 다양한 친수시설들을 조성하여 활용하고 있다. 이러한 홍수터는 여름철 태풍이나 집중호우로 인해 침수되다가, 강우 사상이 종료된 이후에는 유사가 퇴적되어 복구비용이 반복적으로 발생하고 있다. 홍수시 홍수터에서의 수리적 안정성을 평가하기 위해서는 홍수터를 포함한 복단면에서의 흐름해석이 선행되어야 하며, 계산된 수리적 인자들을 이용하여 홍수터에서의 수리적 안정성을 평가할 수 있다. 국외에서는 국내와 다르게 하천 홍수터 공간을 거의 활용하지 않기 때문에 홍수터에서의 수리적 안정성 평가에 대한 연구사례는 드문 실정이며, 도시침수로 인한 제내지 홍수위험도 평가에 대한 연구가 주를 이루고 있다. 하지만 기존에 사용되고 있는 제내지 홍수위험도 지수를 국내 홍수터에 도입하여 수리적 안정성을 평가하기에는 침식 및 퇴적을 올바르게 고려할 수 없는 한계점이 있기 때문에 본 연구에서는 홍수시 홍수터 내에서 침식과 퇴적을 고려할 수 있는 홍수터 수리적 안정성 지수를 산정하고 과거 연구된 실내 수리실험 자료와 비교하여 적용성을 분석하고자 한다. 또한 자연하천에서의 실제 태풍 사상에 의한 침식 및 퇴적의 상대적 공간분포를 산정하여 홍수터에서의 수리적 안정성을 평가하고자 하였다.

  • PDF

Study on the Optimal Construction Method for the Compaction Method of Hydraulic Filling in Metropolitan Areas (도심지 물다짐 공법의 적정 시공방법에 관한 연구)

  • Jeong, Dal-Yeong;Jang, Jong-Hwan;Chung, Jin-Hyuck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.175-181
    • /
    • 2020
  • This paper suggests a proper hydraulic filling method in downtown areas. Road subsidence on roadways and sidewalks in downtown areas can result in vehicle damage and casualties. The representative cause of road subsidence is the fraudulent construction in nearby construction sites. A deficiency of excavation restoration causes approximately 25~49% of subsidence. This is performed by equipment or manpower. Hydraulic filling is used in backfilling narrow pipe conduits and spaces between structures. On the other hand, standard specifications and quality assurance standards regarding hydraulic filling principles and construction conditions are insufficient. Therefore, in-door model experiments on hydraulic filling principles, backfilling material, and compaction efficiency were performed. This paper suggests guidelines by investigating and analyzing construction status. In conclusion, thrown backfilling material has a particle size distribution and permeability coefficient as major factors, and detailed standards of the factors are suggested. To improve the compaction efficiency, 90% or more, compaction by the floor should be in units of 0.3m while ensuring a lower drainage layer. When an H-shape stabilizing pile is pulled out after filling, additional hydraulic filling should be in the disturbance range.

An Experimental Study on the Flexural Behavior of One-Way Concrete Slabs Using the Restorative Mortar and Crimped Wire Mesh (크림프 철망 및 단면복구 보수 모르타르를 사용한 일방향 슬래브의 휨 거동에 관한 실험적 연구)

  • Lee, Mun-Hwan;Song, Tae-Hyeob
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.5
    • /
    • pp.569-575
    • /
    • 2007
  • The repair of concrete surfaces does not normally take into account structural tolerance for longer service lift and better capabilities of concrete structures. In particular, the repair of surface spelling completes as mortar is applied, which does not display additional structural performances. The use of crimped wire mesh for better construction and fracture resistance, however, expects to have some reinforcement effects. Particularly, it is also expected that the repair of bottom part in structures built between bridges like irrigation structures results in the increase of flexural resistance. Therefore, this study is intended to perform the repair using crimp wire mesh and examine strength depending on the repair section and depth. For this, a slab with 150 mm in depth, 3,000 mm in length and 600 mm in width and total 8 objects to experiment such as upper part, upper whole, bottom part, bottom whole and crimp wire mesh reinforced are manufactured to perform flexural performance. The results of the analysis show that yield strength and failure load increase as the depth of repair materials in the experiment reinforced with crimp wire mesh get bigger. In the same condition, repair of bottom part is able to increase internal force of bending force. Besides, the results show that partial repair of structures under bending force cannot produce flexural performance. Consequently, the repair method with crimp wire mesh results in the increase of flexural resistance.