• Title/Summary/Keyword: 단면거리

Search Result 265, Processing Time 0.031 seconds

Study on Prediction of Compressive Strength of Concrete based on Aggregate Shape Features and Artificial Neural Network (골재의 형상 특성과 인공신경망에 기반한 콘크리트 압축강도 예측 연구)

  • Jeon, Jun-Seo;Kim, Hong-Seop;Kim, Chang-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.135-140
    • /
    • 2021
  • In this study, the concrete aggregate shape features were extracted from the cross-section of a normal concrete strength cylinder, and the compressive strength of the cylinder was predicted using artificial neural networks and image processing technology. The distance-angle features of aggregates, along with general aggregate shape features such as area, perimeter, major/minor axis lengths, etc., were numerically expressed and utilized for the compressive strength prediction. The results showed that compressive strength can be predicted using only the aggregate shape features of the cross-section without using major variables. The artificial neural network algorithm was able to predict concrete compressive strength within a range of 4.43% relative error between the predicted strength and test results. This experimental study indicates that various material properties such as rheology, and tensile strength of concrete can be predicted by utilizing aggregate shape features.

The dynamic characteristics of upper hot gas layer and smoke propagation along with tunnel slope in case of fire (터널 내 화재 시 경사에 따른 온도층 및 연기유동 특성)

  • Rie, Dong-Ho;Kim, Ha-Young;Moon, Sung-Woong;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.223-228
    • /
    • 2009
  • The aim of this research is to analyse the dynamic characteristics of the hot upper smoke layer in case of fire in a tunnel. In order to get the result, computer simulation technique has been used. The fire scenarios were set on the basis of standard cross section of national and express highways through NIST's FDS. As the area of a tunnel increased, the influence of the wind velocity decreased. Furthermore, the influence of the slope of a road was reduced as the wind velocity increased. On the other hand, as the wind velocity increased, the influence of the slope of a road decreased. This phenomena is believed to be caused by the cooling effect of wind which is over 1 m/s in speed, hence, reducing the influence of the effect of slope.

A basic study on explosion pressure of hydrogen tank for hydrogen fueled vehicles in road tunnels (도로터널에서 수소 연료차 수소탱크 폭발시 폭발압력에 대한 기초적 연구)

  • Ryu, Ji-Oh;Ahn, Sang-Ho;Lee, Hu-Yeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.517-534
    • /
    • 2021
  • Hydrogen fuel is emerging as an new energy source to replace fossil fuels in that it can solve environmental pollution problems and reduce energy imbalance and cost. Since hydrogen is eco-friendly but highly explosive, there is a high concern about fire and explosion accidents of hydrogen fueled vehicles. In particular, in semi-enclosed spaces such as tunnels, the risk is predicted to increase. Therefore, this study was conducted on the applicability of the equivalent TNT model and the numerical analysis method to evaluate the hydrogen explosion pressure in the tunnel. In comparison and review of the explosion pressure of 6 equivalent TNT models and Weyandt's experimental results, the Henrych equation was found to be the closest with a deviation of 13.6%. As a result of examining the effect of hydrogen tank capacity (52, 72, 156 L) and tunnel cross-section (40.5, 54, 72, 95 m2) on the explosion pressure using numerical analysis, the explosion pressure wave in the tunnel initially it propagates in a hemispherical shape as in open space. Furthermore, when it passes the certain distance it is transformed a plane wave and propagates at a very gradual decay rate. The Henrych equation agrees well with the numerical analysis results in the section where the explosion pressure is rapidly decreasing, but it is significantly underestimated after the explosion pressure wave is transformed into a plane wave. In case of same hydrogen tank capacity, an explosion pressure decreases as the tunnel cross-sectional area increases, and in case of the same cross-sectional area, the explosion pressure increases by about 2.5 times if the hydrogen tank capacity increases from 52 L to 156 L. As a result of the evaluation of the limiting distance affecting the human body, when a 52 L hydrogen tank explodes, the limiting distance to death was estimated to be about 3 m, and the limiting distance to serious injury was estimated to be 28.5~35.8 m.

A Structural Analysis of the Spent Nuclear Fuel Disposal Canister with the Spent Nuclear Fuel Basket Array Change for the Pressurized Water Reactor(PWR) (고준위폐기물 다발의 배열구조변화에 따른 가압경수로(PWR)용 고준위폐기물 처분용기의 구조해석)

  • Kwon, Young-Joo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.289-301
    • /
    • 2010
  • A structural model of the SNF(spent nuclear fuel) disposal canister for the PWR(pressurized water reactor) for about 10,000 years long term deposition at a 500m deep granitic bedrock repository has been developed through various structural safety evaluations. The SNF disposal baskets of this canister model have the array type of which four square cross section baskets stand parallel to each other and symmetrically with respect to the center of the canister section. However whether this developed structural model of the SNF disposal canister is best is not determinable yet, because the SNF disposal canister with this parallel array has a limitation in shortening the diameter for the weight reduction due to the shortest distance between the outer corner of the square section and the outer shell. Therefore, the structural safety evaluation of the SNF disposal canister with the rotated basket array which is also symmetric with respect to the canister center planes is very necessary. Even though such a canister model has not been found as yet in the literature, the structural analysis of the canister with the rotated basket array for the PWR is required for the comparative study of the structural safety of canister models. Hence, the structural analysis of the canister with the rotated basket array in which each basket is rotated with a certain amount of degrees around the center of the basket itself and arrayed symmetrically with respect to the center planes is carried out in this paper. The structural analysis result shows that the SNF disposal canister with the rotated basket array in which the SNF disposal basket is rotated as 30~35 degrees around the center of the basket itself is structurally more stable than the previously developed SNF disposal canister with the parallel basket array.

Combustion Performance According to the Cavity Flameholder Location in a Supersonic Combustor (초음속 연소기에서 공동형 보염기 위치에 따른 연소 성능)

  • Yang, Inyoung;Lee, Kyung-jae;Lee, Yang-ji;Lee, Sang-hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.13-20
    • /
    • 2020
  • The effect of the relative distance between two cavity flame holders on the performance of a supersonic combustor was experimentally investigated. A rectangular cross-sectional combustor model with one cavity flame holder on each of two facing walls was used, with two difference distances between cavities of 135 mm and 220 mm. The fuel equivalence ratio was varied as 0.16 and 0.38. A direct-connected type test facility was used to provide Mach 2 flow condition. The test results revealed that the combustion pressure was higher for the shorter cavity distance case. But fuel equivalence ratio did not have large effect on the combustion pressure. It was concluded that, to get higher combustor pressure, there needs to be further combustor configuration change such as smaller cavity distance or tandem cavity installation.

Inverting Vertical-Slice Tomography Measurements in the East Sea using Explosive Charges (동해에서 SUS-해양음향 토모그래피를 이용한 수직단면 역산)

  • Oh Suntaek;Na Jungyul;Choi Jee Woong;Shim Taebo;Choi Jin Hyuk;Jurng Mun Sub;Park Joungsoo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.181-184
    • /
    • 1999
  • 동해 울릉분지에서 1998년 8월 수중 폭발성 음원인 SUS를 이용하여 수온구조를 파악하기 위하여 해양음향 토모그래피 실험을 수행하였다. 실험은 관측해역 중앙에 수직선배열 수신기(수심 270-360m, 10개)를 설치하고 수신기를 중심으로 반경 30km와 603m에서 항공기를 이용하여 SUS charge(244m)를 36개 지점에 투하하였다. 역산결과와 비교하기 위해 AXBT를 이용하여 각 지점에 대한 수직 수온관측이 동시에 수행되었다. 도달시간 계산을 위해 폭발수심 및 시간은 실험식을 이용하였으며 이를 이용하여 음선경로별 도달시간을 관측하였다. 수직단면 수층을 여러 충으로 나누어 격자별 음선 전파거리를 계산, 표준해양에 대한 도달시간 차이를 이용한 역산 결과는 관측결과와 비교했을 떼 각각의 결과는 차이가 있었으나 전반적인 경향은 유사하게 나타났다.

  • PDF

Measurement of Absorbed Dose at the Tissue Surface from a Plain $^{90}Sr+^{90}Y$ Beta Sources (조직 표면에서의 베타선 흡수선량 측정)

  • Hah, Suck-Ho;Kim, Jeong-Mook;Yook, Chong-Chul
    • Journal of Radiation Protection and Research
    • /
    • v.16 no.2
    • /
    • pp.17-26
    • /
    • 1991
  • Beta ray $(^{90}Sr+^{90}Y)$ absorbed dose at tissue surface was measured from the distance of 30cm by use of extrapolation chamber. In the measurement, following factors were considered: effective area of collecting electrode, polarity effect, ion recombination and window attenuation. The measured absorbed dose rate at tissue surface was $1.493{\mu}Gy/sec$ with ${\pm}2.9%$.

  • PDF

Prediction of the Edge Sealing Shape on the Vacuum Glazing Using the Nonlinear Regression Analysis (비선형회귀분석을 이용한 진공유리 모서리 접합단면 형상예측)

  • Kim, Youngshin;Jeon, Euysik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1016-1021
    • /
    • 2013
  • While using the hydrogen mixture gas torch, the glass edge sealing and the shape of the edge sealing parts is affected by many parameters such as flow rate of gas, traveling speed of torch, distance between glass and torch. As the glass edge sealing shape have effects on the insulation and airtightness and strength of the glass panel; the sealing shapes are predicted according to the process parameters. The paper highlight the nonlinear regression equations of the cross-sectional shape of the sealing shape according to the parameters, that is experimentally predicted later compared and verified the equation with the experimental result.

Damages on lee side of breakwaters by wave overtopping: Case study (월파에 의한 경사제 배후면 피해 : 실험사례)

  • Kim, Young-Taek;Lee, Jong-In
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.716-716
    • /
    • 2012
  • 최근 항만구조물을 설계함에 있어 대수심 및 고파랑 지역에 설치되는 외곽시설의 상당수는 직립식 케이슨 혼성제 단면을 채택하고 있다. 이는 상대적으로 수심이 깊고, 설계파와 같은 외력 조건이 크기 때문에 경사제에 비하여 경제성 및 시공성이 유리하기 때문으로 판단된다. 그렇지만 아직까지 소규모 항만 및 어항시설에 있어 경사제를 채택하고 있다. 본 연구에서는 이와 같은 경사식 구조물을 설계함에 있어 월파에 의한 방파제 배후 경사면에 피복된 피복재의 안정성을 검토하며, 실험사례를 통하여 최적 설계안 및 설계방향을 제시하고자 한다. 경사식 구조물 배후 사면 피복재의 안정 중량에 대해서는 우리나라의 항만 구조물의 설계기준(항만 및 어항설계기준, 2005) 뿐만 아니라 국외의 설계기준(CEM, Coastal engineering manual, 2005 등)에서도 아직까지 설계법을 제시하고 있지 않고 있다. 본 연구에서 수행한 단면 수리모형실험에서는 1/50의 실험축척을 적용하여 대상 외곽 구조물에 대하여 수리특성과 안정성을 검토하였다. 특히 경사제 배후의 안정성 확보를 위하려 동일 구간에 대하여 설계파 조건 등을 중심으로 총 9개의 실험안을 설정하여 안정성을 검토하였다. 아래 그림은 이중 초기 설계안과 최종적으로 제안된 제시안에 대한 완성모형, 실험장면 및 결과이다. 일반적으로 접안시설과 외곽시설이 어느 정도 이격되어 있어 적정량의 월파를 허용할 수 있는 경우 상치콘크리트의 형상 및 마루높이을 변경하여 월파의 낙하 및 도달거리를 배후면의 안정성을 확보할 수 있을 정도로 유도함으로써 안정적인 구조물 설계가 가능할 것으로 판단된다.

  • PDF

Measurement of Saw-Teeth Wear by TALYSURF (TALYSURF에 의한 톱니의 마모량측정)

  • Hyun, Jung-Ihn;Klamecki, Barney E.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.22-27
    • /
    • 1980
  • Quantitative assessment of edge blunting of saw-teeth was carried out by TALYSURF. 1. Using the following equation, the real shape of a saw-tooth can be traced on the graph of TALYSURF. ${\frac{{\Delta}h}{h}}={\frac{V{\Delta}_x}{V_x}}$ {${\Delta}h$: vertical distance of stylus h: vertical distance in chart $V{\Delta}_x$: Velocity of stylus $V_x$: velocity of chart} 2. As shown on Fig 2, the error from stylus itself can be calculated by following equation. i) 13.8${\mu}{\leqq}$x<20.4${\mu}$ y=-0.2246x+4.59${\mu}$ ii) 0${\leqq}$x<13.8${\mu}$ y=${\sqrt{(-18{\mu})^2-x^2}}-1.42x+32.7{\mu}}$ 3. The relationship between profile of saw-tooth and error from stylus itself can be calculated by following equation. $E(%)=\frac{f(r){\times}{\frac{4}{18{\mu}}}}{f(R){\times}{\frac{R}{18.5{\mu}}}-f(r){\times}{\frac{r}{18{\mu}}}}{\times}100$ {E(%)${\frac{error\;of\;stylus}{dullness\;of\;saw\;tooth}}{\times}100$ r: radius of stylus tip R: radius of tip which is drawn in graph of talysurf f(r) : error of stylus f(R) : dullness of tip which is drawn in graph of talysurf} 4. The graph of maximum error and profile of saw-tooth was parabola.

  • PDF