• Title/Summary/Keyword: 단기수요예측

Search Result 141, Processing Time 0.027 seconds

Short-Term Electrical Load Forecasting using Neuro-Fuzzy Models (뉴로-퍼지 모델을 이용한 단기 전력 수요 예측시스템)

  • Park, Yeong-Jin;Sim, Hyeon-Jeong;Wang, Bo-Hyeon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.3
    • /
    • pp.107-117
    • /
    • 2000
  • This paper proposes a systematic method to develop short-term electrical load forecasting systems using neuro-fuzzy models. The primary goal of the proposed method is to improve the performance of the prediction model in terms of accuracy and reliability. For this, the proposed method explores the advantages of the structure learning of the neuro-fuzzy model. The proposed load forecasting system first builds an initial structure off-line for each hour of four day types and then stores the resultant initial structures in the initial structure bank. Whenever a prediction needs to be made, the proposed system initializes the neuro-fuzzy model with the appropriate initial structure stored and trains the initialized model. In order to demonstrate the viability of the proposed method, we develop an one hour ahead load forecasting system by using the real load data collected during 1993 and 1994 at KEPCO. Simulation results reveal that the prediction system developed in this paper can achieve a remarkable improvement on both accuracy and reliability compared with the prediction systems based on multilayer perceptrons, radial basis function networks, and neuro-fuzzy models without the structure learning.

  • PDF

Development of Water Demand Forecasting Simulator and Performance Evaluation (단기 물 수요예측 시뮬레이터 개발과 예측 알고리즘 성능평가)

  • Shin, Gang-Wook;Kim, Ju-Hwan;Yang, Jae-Rheen;Hong, Sung-Taek
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.581-589
    • /
    • 2011
  • Generally, treated water or raw water is transported into storage reservoirs which are receiving facilities of local governments from multi-regional water supply systems. A water supply control and operation center is operated not only to manage the water facilities more economically and efficiently but also to mitigate the shortage of water resources due to the increase in water consumption. To achieve the goal, important information such as the flow-rate in the systems, water levels of storage reservoirs or tanks, and pump-operation schedule should be considered based on the resonable water demand forecasting. However, it is difficult to acquire the pattern of water demand used in local government, since the operating information is not shared between multi-regional and local water systems. The pattern of water demand is irregular and unpredictable. Also, additional changes such as an abrupt accident and frequent changes of electric power rates could occur. Consequently, it is not easy to forecast accurate water demands. Therefore, it is necessary to introduce a short-term water demands forecasting and to develop an application of the forecasting models. In this study, the forecasting simulator for water demand is developed based on mathematical and neural network methods as linear and non-linear models to implement the optimal water demands forecasting. It is shown that MLP(Multi-Layered Perceptron) and ANFIS(Adaptive Neuro-Fuzzy Inference System) can be applied to obtain better forecasting results in multi-regional water supply systems with a large scale and local water supply systems with small or medium scale than conventional methods, respectively.

Construction of integrated DB for domestic water-cycle system and short-term prediction model (생활용수 물순환 계통 통합 DB 및 단기예측모형 구축)

  • Seungyeon Lee;Sangeun Lee
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.362-362
    • /
    • 2023
  • 한정된 수자원의 이용 및 관리로 매년 물 부족과 물 배분 의사결정 문제가 발생하고 있다. 50년간(1965~2014년) 수자원의 총량은 약 1.2배 증가한 반면 인구수 약 1.8배, 생·공·농업용수의 수요는 약 5배가 증가(국회입법조사처, 2018) 했을 뿐 아니라, 기후변화의 영향으로 인한 강수량의 변화와 지역별 편차가 커져 지속가능한 물관리 필요성이 증대되고 있다. 따라서 효율적인 물관리를 위해서는 관리부처가 분절되어 있는 물순환 계통의 데이터를 통합하는 것이 우선시되어야 하고 이를 통해 물순환 모니터링/평가/예측 기술을 개발할 수 있다. 본 연구에서는 생활용수 물순환 계통 통합 DB를 정의 및 구축하였다. 도시의 관점에서 물순환 시스템을 순차적으로 물 유입(수원~취수장)/전달(정수장~급수지역)/유출(하(폐)수처리장~방류구)의 개념으로 설정하고 DB정의서를 마련하였다. 연구대상지는 가뭄이 장기화가 되고 있는 전라남도중 물순환 계통이 비교적 단순한 네트워크로 형성되어 있는 함평군 도시지역으로 선정하였다. 연구 기간은 총 5년(2017년 1월 1일~2021년 12월 31일)이고 일 단위 실계측자료 위주의 원자료를 구축하였다. 이를 이상치 탐지, 제거, 대체의 과정을 거쳐 품질 보정하고 정제된 시계열 자료에 대한 특성 분석을 하였다. 그 결과, 물순환 계통 내 주요 지점 간의 상관관계 및 지연시간을 통한 물흐름의 시계열적 특성을 파악할 수 있었으며 모형의 적합도를 판단하는 데 활용되는 통계량과 유의미하지 않은 잔차의 자기상관성을 볼 때 물 유입-전달-유출의 단기 예측을 위한 ARIMA(Auto-regressive Integrated Moving Average) 모형의 구축도 가능할 것으로 판단되었다. 다만 여름철 발생하는 방류량의 첨두값을 설명하기 위해서는 강우에 의한 불명수 발생으로 증가하는 방류량을 묘사할 수있어야 하므로 향후에는 물순환계통 외 해당 지역의 불명수(강우 효과)도 하수 방류량의 주요 입력 요인으로 추가 검토할 필요가 있다.

  • PDF

Predicting Raw Material Price Fluctuation Using Signal Approach: Application to Non-ferrous Metals (신호접근법을 이용한 비철금속 상품가격변동 예측모형 연구)

  • Kim, Ji-Whan;Lee, Sang-Ho
    • Economic and Environmental Geology
    • /
    • v.42 no.2
    • /
    • pp.143-152
    • /
    • 2009
  • Recent raw material prices fluctuation has been unexpectedly high and that made Korean economic activities to be depressed. Because most raw material supply in Korea depends upon oversea imports, unexpected raw material price fluctuation affects Korean industrial economies through macroeconomic variables. So Korean government enforces some political measures such as demand management and the supply-security assurance as long-range policies, and reservation and general early warning system as short-range policies. In short-range policies, it is necessary to be expected short term fluctuation. Up to recently, there have been many researches and most of those researches use parametric methods or time series analyses. Because those methods and analyses often generate inadequate relations among variables, it is possible that some consistent variables are left out or the results are misunderstood. This study, therefore, is aim to mitigate those methodological problems and find the relatively appropriate model for economic explanation. So that, in this paper, by using non-parametric signal approach method mitigating some shortages of previous researches and forecasting properly short-range prices fluctuation of non-ferrous materials are presented empirically.

An Algorithm of Short-Term Load Forecasting (단기수요예측 알고리즘)

  • Song Kyung-Bin;Ha Seong-Kwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.10
    • /
    • pp.529-535
    • /
    • 2004
  • Load forecasting is essential in the electricity market for the participants to manage the market efficiently and stably. A wide variety of techniques/algorithms for load forecasting has been reported in many literatures. These techniques are as follows: multiple linear regression, stochastic time series, general exponential smoothing, state space and Kalman filter, knowledge-based expert system approach (fuzzy method and artificial neural network). These techniques have improved the accuracy of the load forecasting. In recent 10 years, many researchers have focused on artificial neural network and fuzzy method for the load forecasting. In this paper, we propose an algorithm of a hybrid load forecasting method using fuzzy linear regression and general exponential smoothing and considering the sensitivities of the temperature. In order to consider the lower load of weekends and Monday than weekdays, fuzzy linear regression method is proposed. The temperature sensitivity is used to improve the accuracy of the load forecasting through the relation of the daily load and temperature. And the normal load of weekdays is easily forecasted by general exponential smoothing method. Test results show that the proposed algorithm improves the accuracy of the load forecasting in 1996.

Short-term Peak Power Demand Forecasting using Model in Consideration of Weather Variable (기상 변수를 고려한 모델에 의한 단기 최대전력수요예측)

  • 고희석;이충식;최종규;지봉호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.73-78
    • /
    • 2001
  • BP neural network model and multiple-regression model were composed for forecasting the special-days load. Special-days load was forecasted using that neural network model made use of pattern conversion ratio and multiple-regression made use of weekday-change ratio. This methods identified the suitable as that special-days load of short and long term was forecasted with the weekly average percentage error of 1∼2[%] in the weekly peak load forecasting model using pattern conversion ratio. But this methods were hard with special-days load forecasting of summertime. therefore it was forecasted with the multiple-regression models. This models were used to the weekday-change ratio, and the temperature-humidity and discomfort-index as explanatory variable. This methods identified the suitable as that compared forecasting result of weekday load with forecasting result of special-days load because months average percentage error was alike. And, the fit of the presented forecast models using statistical tests had been proved. Big difficult problem of peak load forecasting had been solved that because identified the fit of the methods of special-days load forecasting in the paper presented.

  • PDF

파생증권의 가격발견 기능을 이용한 거래전략의 수익성에 관한 연구

  • Min, Jae-Hun
    • The Korean Journal of Financial Studies
    • /
    • v.9 no.1
    • /
    • pp.163-187
    • /
    • 2003
  • 본 연구는 옵션가격 및 거래량 자료를 이용하여 옵션시장의 가격발견 기능에 대해서 분석을 시도하였다. 이를 위해 먼저 옵션가격과 거래량 정보가 현물시장을 선행하는 현상에 대해서 분석해 보았다. 옵션가격은 실제 현물지수를 약 1시간 정도 선행하는 것으로 관찰되었다. 콜옵션 가격이 풋옵션에 비해서 상대적으로 옵션시장에서 높게 거래되는 경우 이는 현물주식시장에서의 주가상승을 예고하는 것으로 나타났다. 옵션 거래량 정보 역시 현물시장의 가격움직임을 예측하는데 유효한 것으로 관찰되었다. 콜옵션의 풋옵션 대비 상대적인 거래증가는 투자자의 낙관적인 장세전망을 반영해 일단 현물지수의 상승을 야기하는 것으로 나타났으나 이후 투자자의 풋옵션을 통한 헤지(hedge) 수요의 증가로 이어지는 것으로 조사되었다. 두 번째로 본 연구는 이러한 옵션시장의 가격발견 기능을 이용하여 매매전략을 수립하고 이를 통하여 투자이익을 극대화시킬 수 있는지에 대해서 살펴보았다. 콜옵션 가격(거래량)이 풋옵션 가격(거래량)에 비해 고평가(증가) 되었을 경우 이는 주가상승을 미리 예고하고 있는 신호로 받아들어져 주식을 매입하고 반대로 콜옵션 가격(거래량)이 풋옵션 가격(거래량)에 비해 저평가(감소) 되었다면 주가하락을 예측하기 때문에 주식을 매도함으로써 투자이익을 증대시킬 수 있을 것이다. 실증분석 결과는 우선 옵션 가격정보를 이용하여 현물시장에서 지수 바스켓 포트폴리오를 매매하려는 전략은 30분 내외의 단기 투자에는 유효하나 그 이상의 투자기간을 가지는 경우에는 예상과는 다른 결과를 초래하였다. 반면 옵션시장에서의 콜옵션과 풋옵션의 상대적인 거래량 정보는 현물주식시장의 움직임을 예측하는데 옵션 가격정보에 비해서 보다 효과적인 것으로 판단되었다. 조사한 모든 일중 및 1일(overnight) 투자수익률에서 옵션 거래량의 상대적 비율에 의거한 투자전략은 통계적으로 유의한 투자수익률의 차이를 가져왔다.

  • PDF

Future Technology Foresight for an Enterprise : Methodology and Case (기업의 미래기술예측을 위한 방법론 및 사례 연구)

  • Jeong Seok Yun;Nam Se Il;Hong Seok;Han Chang Hee
    • The Journal of Society for e-Business Studies
    • /
    • v.11 no.1
    • /
    • pp.69-89
    • /
    • 2006
  • Due to the technological developments and industrial changes , studying for the future has been attached great importance. According to the forthcoming ubiquitous computing environment or smart environment, it is necessary for a country and an enterprise to forecast the future or foresight the future technologies . Although many countries have been doing the foresight, it is difficult for the enterprise to try future foresight activity, because the foresight activity needs lots of the costs and time for good results. Also, almost methodologies used in foresight are suitable for country level foresight projects. In this research, a methodology is developed for an enterprise to use easily, and a case based on the proposed methodology is presented. The proposed foresight methodology is developed based on the traditional forecasting methods, FAR, Future Wheel, and Scenario. Especially, the methodology focused on the customers of a company.

  • PDF

Short-Term Electric Load Forecasting for the Consecutive Holidays Using the Power Demand Variation Rate (전력수요 변동률을 이용한 연휴에 대한 단기 전력수요예측)

  • Kim, Si-Yeon;Lim, Jong-Hun;Park, Jeong-Do;Song, Kyung-Bin
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.6
    • /
    • pp.17-22
    • /
    • 2013
  • Fuzzy linear regression method has been used for short-term load forecasting of the special day in the previous researches. However, considerable load forecasting errors would be occurring if a special day is located on Saturday or Monday. In this paper, a new load forecasting method for the consecutive holidays is proposed with the consideration of the power demand variation rate. In the proposed method, a exponential smoothing model reflecting temperature is used to short-term load forecasting for Sunday during the consecutive holidays and then the loads of the special day during the consecutive holidays is calculated using the hourly power demand variation rate between the previous similar consecutive holidays. The proposed method is tested with 10 cases of the consecutive holidays from 2009 to 2012. Test results show that the average accuracy of the proposed method is improved about 2.96% by comparison with the fuzzy linear regression method.

Travel Behavior Analysis for Short-term Railroad Passenger Demand Forecasting in KTX (KTX 단기수요 예측을 위한 통행행태 분석)

  • Kim, Han-Soo;Yun, Dong-Hee
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1282-1289
    • /
    • 2011
  • The rail passenger demand for the railroad operations required a short-term demand rather than a long-term demand. The rail passenger demand can be classified according to the purpose. First, the rail passenger demand will be use to the restructure of line planning on the current operating line. Second, the rail passenger demand will be use to the line planning on the new line and purchasing the train vehicles. The objective of study is to analyze the travel behavior of rail passenger for modeling of short-term demand forecasting. The scope of research is the passenger of KTX. The travel behavior was analyzed the daily trips, origin/destination trips for KTX passenger using the ANOVA and the clustering analysis. The results of analysis provide the directions of the short-term demand forecasting model.

  • PDF