• Title/Summary/Keyword: 다층모형분석

Search Result 124, Processing Time 0.03 seconds

인공신경망을 이용한 부실기업예측모형 개발에 관한 연구

  • Jung, Yoon;Hwang, Seok-Hae
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.415-421
    • /
    • 1999
  • Altman의 연구(1965, 1977)나 Beaver의 연구(1986)와 같은 전통적 예측모형은 분석자의 판단에 따른 예측도가 높은 재무비율을 선정하여 다변량판별분석(MDA: multiple discriminant analysis), 로지스틱회귀분석 등과 같은 통계기법을 주로 이용해 왔으나 1980년 후반부터 인공지능 기법인 귀납적 학습방법, 인공신경망모형, 유전모형 둥이 부실기업예측에 응용되기 시작했다. 최근 연구에서는 인공신경망을 활용한 변수 및 모형개발에 관한 보고가 있다. 그러나 지금까지의 연구가 주로 기업의 재무적 비율지표를 고려한 모형에 치중되었으며 정성적 자료인 비재무지표에 대한 검증과 선정이 자의적으로 이루어져온 경향이었다. 또한 너무 많은 입력변수를 사용할 경우 다중공선성 문제를 유발시킬 위험을 내포하고 있다. 본 연구에서는 부실기업예측모형을 수립하기 위하여 정량적 요인인 재무적 지표변수와 정성적요인인 비재무적 지표변수를 모두 고려하였다. 재무적 지표변수는 상관분석 및 요인분석들을 통하여 유의한 변수들을 도출하였으며 비재무적 지표변수는 조직생태학내에서의 조직군내 조직사멸과 관련된 생태적 과정에 대한 요인들 중 조직군 내적요인으로 조직의 연령, 조직의 규모, 조직의 산업밀도를 도출하여 4개의 실험집단으로 분류하여 비재무적 지표변수를 보완하였다. 인공신경망은 다층퍼셉트론(multi-layer perceptrons)과 역방향 학습(back-propagation )알고리듬으로 입력변수와 출력변수, 그리고 하나의 은닉층을 가지는 3층 퍼셉트론(three layer perceptron)을 사용하였으며 은닉충의 노드(node)수는 3개를 사용하였다. 입력변수로 안정성, 활동성, 수익성, 성장성을 나타내는 재무적 지표변수와 조직규모, 조직연령, 그 조직이 속한 산업의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적 중률을 나타내었다.

  • PDF

인공신경망을 이용한 부실기업예측모형 개발에 관한 연구

  • Jung, Yoon;Hwang, Seok-Hae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.415-421
    • /
    • 1999
  • Altman의 연구(1965, 1977)나 Beaver의 연구(1986)와 같은 전통적 예측모형은 분석자의 판단에 따른 예측도가 높은 재무비율을 선정하여 다변량판별분석(MDA:multiple discriminant analysis), 로지스틱회귀분석 등과 같은 통계기법을 주로 이용해 왔으나 1980년 후반부터 인공지능 기법인 귀납적 학습방법, 인공신경망모형, 유전모형 등이 부실기업예측에 응용되기 시작했다. 최근 연구에서는 인공신경망을 활용한 변수 및 모형개발에 관한 보고가 있다. 그러나 지금까지의 연구가 주로 기업의 재무적 비율지표를 고려한 모형에 치중되었으며 정성적 자료인 비재무지표에 대한 검증과 선정이 자의적으로 이루어져온 경향이었다. 또한 너무 많은 입력변수를 사용할 경우 다중공선성 문제를 유발시킬 위험을 내포하고 있다. 본 연구에서는 부실기업예측모형을 수립하기 위하여 정량적 요인인 재무적 지표변수와 정성적 요인인 비재무적 지표변수를 모두 고려하였다. 재무적 지표변수는 상관분석 및 요인분석들을 통하여 유의한 변수들을 도출하였으며 비재무적 지표변수는 조직생태학내에서의 조직군내 조직사멸과 관련된 생태적 과정에 대한 요인들 중 조직군 내적요인으로 조직의 연령, 조직의 규모, 조직의 산업밀도를 도출하여 4개의 실험집단으로 분류하여 비재무적 지표변수를 보완하였다. 인공신경망은 다층퍼셉트론(multi-layer perceptrons)과 역방향 학습(back-propagation)알고리듬으로 입력변수와 출력변수, 그리고 하나의 은닉층을 가지는 3층 퍼셉트론(three layer perceptron)을 사용하였으며 은닉층의 노드(node)수는 3개를 사용하였다. 입력변수로 안정성, 활동성, 수익성, 성장성을 나타내는 재무적 지표변수와 조직규모, 조직연령, 그 조직이 속한 산업의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.

  • PDF

Analysis of Influencing Factors of Elementary School Students' Computational Thinking and SW Education Attitudes using 3-Level Multilevel Models (3수준 다층모형을 통한 초등학생의 컴퓨팅 사고력 및 SW교육태도 영향요인 분석)

  • Park, Hyeongyong;Ahn, Sung Hun;Kim, Chong Min;Lim, Hyunjung
    • The Journal of Korean Association of Computer Education
    • /
    • v.20 no.6
    • /
    • pp.83-94
    • /
    • 2017
  • The purpose of this study is to analyze factors affecting elementary school students' computational thinking and SW education attitude using a 3-level multi-level models. The results of this study are as follows: First, 'Computer at home', 'SW competition participation experience', 'SW education satisfaction', and 'SW awareness' have a statistically significant effect on the initial value of computational thinking while 'SW period of education' and 'SW education experience at after school' have a statistically effect on the change rate of computational thinking. Second, 'SW awareness', 'SW education satisfaction' and 'gender' have a positive effect on the initial values of SW education attitude whereas 'SW period of education' has a slight negative influence on the change rate of SW education attitude.

An Analysis of the Migration of the Public Institutes workers on Resettlement to Local cities (혁신도시 이전공공기관 종사자의 거주이전 결정요인 분석)

  • ROH, Yong Sik;LEE, Young Hwan
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.2
    • /
    • pp.221-231
    • /
    • 2021
  • This paper identify factors of migration of employees' household who work for relocated public institutions. As a factors of migration, we consider individual and household characteristics, the gravity model of distance and population and so on. Considering discrete dependant variable and structure of data, we employ the logistic multilevel model and random intercept model. The result indicates employees' who are female, 30s and 40s, higher education level(PhD) and whose spouse are unemployed tend to transfer their residential registration to new city near relocated public institution. Regarding regional variable, the distance from employee's previous residential location and number of migration of prior year are statistically significant. Also the model indicate regional economy, educational and residential environment of new city influence employee's decision for transferring residential registration.

Analysis of Determinants of Employment Retention Rate (고용유지율 결정요인 분석)

  • Lee, Sikyoon
    • Korean Journal of Labor Studies
    • /
    • v.23 no.2
    • /
    • pp.169-193
    • /
    • 2017
  • This study analyzed the determinants that affect employment retention rate in order to diagnose dynamic employment stability in Korea. For this analysis, we constructed multi-level hierarchical data linking Workplace panel survey data and employment insurance job history data. And the determinants were analyzed using a multi-level analysis model suitable for these data. As result of the analysis, it is estimated that the employment stability is very low in Korea due to the widespread existence of the marginal sectors with low wage level and high level of nonstandard employment. In addition, the results of this analysis show that employment structure of Korea occupies considerable area of short-term employment where employment and unemployment are repeated, and overall employment stability is weak. This fact is likely to be a limiting factor for continued growth, as there is limited opportunity for skill development and skills formation at the corporate and individual levels. According to the results of this analysis, it is required to improve the quality of the employment structure for continuous growth and skill formation.

Investigation of middle-school students' self-directed learning (중학교 학생들의 자기주도적 학습 능력 분석)

  • Juhu Kim;Jeeyeong Namgung
    • Korean Journal of Culture and Social Issue
    • /
    • v.14 no.1_spc
    • /
    • pp.153-166
    • /
    • 2008
  • The purpose of this study was to investigate middle school student's self-directed learning(SDL) using a hierarchical linear modeling. By considering variances of SDL at individual and school level, the student's SDL was explained in terms of school quality as well as individual efforts. For the HLM analysis, participation in private tutoring, teacher's support for SDL, caring students' individual needs, and participation in extra curriculum activities were explored at individual level. At school level, school SES, quality of national curriculum implementation, and parental support for school were utilized. The results of analysis showed that more than 95% of variance of SDL was explained by variables at individual level. Among the variables at individual level, private tutoring was not a significant variable explaining the SDL. Based upon the results, multiple regression analyses by background variables were also conducted. By interpreting the results of analyses, the impact of school quality and individual efforts on the SDL was discussed.

  • PDF

A Study on Construction of Back-propagation Architecture for ARMA data (ARMA 데이터에 대한 Back-propagation 신경망의 구조)

  • 김나영;김희영
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.17-22
    • /
    • 2000
  • 시계열 자료를 분석할 때 쉽게 접근하는 통계적 방법은 ARMA 모형이며 신경망 학습 방법 중에서는 다층 퍼셉트론에서의 Back-propagation 알고리즘이 일반적이다. Back-propagation을 비롯한 신경망 학습의 구조는 자료의 특성에 따라 경험적으로 결정하는 것으로 알려져 있다. 그러나 바로 이 점이 신경망 학습방법의 이용을 어렵게 하는 요인이기도 하다. 본 연구는 ARMA 모형 중 몇 개 유형의 자료에 대하여 Back-propagation 알고리즘을 적용함에 있어 어떠한 구조로 학습하는 것이 효율적인가를 입력층과 은닉층의 크기, 활성화 함수를 중심으로 검토하였다.

  • PDF

A Multi-Level Analysis of Influential Factors of Residents' Housing Instability in Korean Metropolitan Environments (대도시 거주자들의 주거불안정 영향요인에 관한 다층분석)

  • Lee, Minju
    • Journal of the Korean Regional Science Association
    • /
    • v.36 no.4
    • /
    • pp.57-67
    • /
    • 2020
  • This study aims to analyze influential factors of residents' housing instability in Korean large cities. The previous studies deal with low-income households' experiences with housing instability. However, this study empirically analyzed the impact of regional characteristics such as spatial openness and community characteristics on residents' housing instability. For this purpose, I analyzed various experiences as symptoms of residents' housing instability using data from the Ministry of Land, Infrastructure, and Transport's (MOLIT) Korean Housing survey through a multi-level logistic regression model. The study finds that regional factors as well as household characteristics influence their housing instability. This result implies that promoting spatial inclusivity alleviate residents' housing instability in metropolitan environments. In addition, this study calls for policy efforts such as a continuous supply of public rental housing and a greater variety of housing types to mitigate housing instability.

A Study on Containerports Clustering Using Artificial Neural Network(Multilayer Perceptron and Radial Basis Function), Social Network, and Tabu Search Models with Empirical Verification of Clustering Using the Second Stage(Type IV) Cross-Efficiency Matrix Clustering Model (인공신경망모형(다층퍼셉트론, 방사형기저함수), 사회연결망모형, 타부서치모형을 이용한 컨테이너항만의 클러스터링 측정 및 2단계(Type IV) 교차효율성 메트릭스 군집모형을 이용한 실증적 검증에 관한 연구)

  • Park, Ro-Kyung
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.9 no.6
    • /
    • pp.757-772
    • /
    • 2019
  • The purpose of this paper is to measure the clustering change and analyze empirical results, and choose the clustering ports for Busan, Incheon, and Gwangyang ports by using Artificial Neural Network, Social Network, and Tabu Search models on 38 Asian container ports over the period 2007-2016. The models consider number of cranes, depth, birth length, and total area as inputs and container throughput as output. Followings are the main empirical results. First, the variables ranking order which affects the clustering according to artificial neural network are TEU, birth length, depth, total area, and number of cranes. Second, social network analysis shows the same clustering in the benevolent and aggressive models. Third, the efficiency of domestic ports are worsened after clustering using social network analysis and tabu search models. Forth, social network and tabu search models can increase the efficiency by 37% compared to that of the general CCR model. Fifth, according to the social network analysis and tabu search models, 3 Korean ports could be clustered with Asian ports like Busan Port(Kobe, Osaka, Port Klang, Tanjung Pelepas, and Manila), Incheon Port(Shahid Rajaee, and Gwangyang), and Gwangyang Port(Aqaba, Port Sulatan Qaboos, Dammam, Khor Fakkan, and Incheon). Korean seaport authority should introduce port improvement plans by using the methods used in this paper.

A Multi-level Study on Volunteering and Giving - Local Public Social Expenditure and Individual Socio-demographic Characteristics - (자원봉사와 기부에 관한 다층적 영향요인 연구 - 지역 공공복지 지출규모와 개인특성 요인을 중심으로-)

  • Jung, Jin-Kyung;Song, Jeong An
    • Korean Journal of Social Welfare
    • /
    • v.68 no.1
    • /
    • pp.5-22
    • /
    • 2016
  • We examined how public social expenditure and individual socio-demographic factors affect individual voluntary activities(volunteering, giving). Hierarchical linear model(HLM) was employed to a nested data set with 37,648 individual subjects and 16 local governments in Korea. HLM analyses yield an insignificant direct effect of public expenditure to volunteering and giving, while individual factors all have significant effects on them. Finally, this study discussed why public social expenditure factor does not have significant influence in this data, and suggested policy implications for promoting volunteering and giving.

  • PDF