• Title/Summary/Keyword: 다차원 분류

Search Result 197, Processing Time 0.028 seconds

Multi-Dimensional Association Rule Mining in Survey Data (설문 데이터를 위한 다차원 연관 규칙 마이닝)

  • 이정수;김교정
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.395-399
    • /
    • 2003
  • 본 논문에서는 인문 사회과학 분야의 방대한 설문 데이터를 처리하기 위해 기존의 설문 항목들간의 평면적 관계에만 국한 되었던 연구에 대해 설문데이터 다차원 연관규칙 마이닝 시스템을 설계하고 데이터 간의 연관규칙을 탐사한다. 즉, 직관적으로 분류될 수 있는 기준에 따라 클러스터링을 실행하여 데이터를 분류한 후 각 클러스터로부터 다차원 연관 규칙을 탐사하는 시스템을 제안함으로써 보다 강력한 연관규칙을 탐사한다.

  • PDF

Alternative Optimal Threshold Criteria: MFR (대안적인 분류기준: 오분류율곱)

  • Hong, Chong Sun;Kim, Hyomin Alex;Kim, Dong Kyu
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.5
    • /
    • pp.773-786
    • /
    • 2014
  • We propose the multiplication of false rates (MFR) which is a classification accuracy criteria and an area type of rectangle from ROC curve. Optimal threshold obtained using MFR is compared with other criteria in terms of classification performance. Their optimal thresholds for various distribution functions are also found; consequently, some properties and advantages of MFR are discussed by comparing FNR and FPR corresponding to optimal thresholds. Based on general cost function, cost ratios of optimal thresholds are computed using various classification criteria. The cost ratios for cost curves are observed so that the advantages of MFR are explored. Furthermore, the de nition of MFR is extended to multi-dimensional ROC analysis and the relations of classification criteria are also discussed.

Affective Representation of Behavioral and Physiological Responses to Emotional Videos using Wearable Devices (웨어러블 기구를 이용한 영상 자극에 대한 행동 및 생리적 정서 표상)

  • Inik Kim;Jongwan Kim
    • Science of Emotion and Sensibility
    • /
    • v.27 no.1
    • /
    • pp.3-12
    • /
    • 2024
  • This study examined affective representation by analyzing physiological responses measured using wearable devices and affective ratings in response to emotional videos. To achieve this aim, a published dataset was reanalyzed using multidimensional scaling to demonstrate affective representation in two dimensions. Cross-participant classification was also conducted to identify the consistency of emotional responses across participants. The accuracy and misclassification in each emotional condition were described by exploring the confusion matrix derived from the classification analysis. Multidimensional scaling revealed that the represented objects, namely, emotional videos, were positioned along the rated valence and arousal vectors, supporting the core affect theory (Russell, 1980). Vector fittings of physiological responses also showed the associations between heart rate acceleration and low arousal, increased heart rate variability and negative and high arousal, and increased electrodermal activity and negative and low arousal. Using the data of behavioral and physiological responses across participants, the classification results revealed that emotional videos were more accurately classified than the chance level of classification. The confusion matrix showed that awe, enthusiasm, and liking, which were categorized as positive, low arousal emotions in this study, were less accurately classified than the other emotions and were misclassified for each other. Through multivariate analyses, this study confirms the core affect theory using physiological responses measured through wearable devices and affective ratings in response to emotional videos.

Research on Multi-facted News Article Classification Models Classifying Subjects, Geographies and Genres (심층 주제, 지역, 장르를 모두 분류할 수 있는 다면적 뉴스 기사 자동 분류 모델 연구)

  • Hyojin Lee;SungPil Choi
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.58 no.3
    • /
    • pp.65-89
    • /
    • 2024
  • This study developed a model to classify news articles into categories of topic, genre, and region using a Korean Pre-trained Language model. To achieve this, a new news article classification system was designed by referring to the classification systems of domestic media outlets. The topic and genre classification models were implemented as hierarchical classification models that link the main categories and subcategories, and their performance was compared with that of an integrated category model. The evaluation results showed that the hierarchical structure classification model had the advantage of providing more precise categorization in ambiguous or overlapping categories compared to the integrated category model. For regional classification of news articles, a model was built to classify into 18 categories, and for regional news articles, the regional characteristics were clearly reflected in the text, resulting in high performance. This study demonstrated the effectiveness of classifying news articles from multiple perspectives-topic, genre, and region-and emphasized the significance of suggesting the potential for a multi-dimensional news article classification service that meets user needs.

Evaluation of Textile Images by Multidimensional Scaling Method (다차원 척도법을 이용한 의류소재 이미지의 평가)

  • 이정순;신혜원
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2002.05a
    • /
    • pp.295-299
    • /
    • 2002
  • 본 연구에서는 피륙의 물리화학적 특성에 의해 결정되는 촉감, 태 이외에도 색채, 무의 등 여러 요소들의 영향을 받아 복합적으로 표현되는 의류소재의 총체적인 개념인 의류소재 이미지는 어떤 것들이 있으며 이러한 이미지들은 어떻게 분류될 수 있는지를 알아보기 위하여 의류소재 이미지의 평가를 위한 축을 개발해 보았다. 1995년부터 2000년까지의 Texjournal과 인터패션플래닝에서 발간되는 98/99FW부터 0255까지 트렌드 북에서 소재를 설명하는 형용사를 조사하여 유사한 형용사를 통합 처리하여 87개의 형용사를 최종 추출하여 형용사쌍을 만들고 소재 자극 없이 형용사쌍이 주는 소재이미지만을 가지고 쌍비교법을 통해 유사성을 7점 척도로 표시하도록 하였다. 얻어진 결과를 다차원척도법을 이용하여 분석하여 87개의 형용사의 평가차원을 살펴보았다. 의류소재 이미지를 평가하는 축을 다차원 척도법을 이용하여 개발한 결과 '남성적-여성적', '새로운-낡은 듯한', '캐주얼-클래식', '모호한-정돈된'의 4가지 차원의 8개축이 개발되었다.

  • PDF

A Framework for Information Industries and Its implications toward Electronic Commerce (전자상거래를 위한 정보산업 분류체계와 활용방안)

  • 임춘성;김상균;박형근
    • Proceedings of the CALSEC Conference
    • /
    • 2000.08a
    • /
    • pp.245-254
    • /
    • 2000
  • 본 연구에서는 새롭게 산업형태로서 그 중요성이 부각되고 있는 정보산업에 대한 다차원적인 분류체계를 제시하였다. 정보산업을 구현기술, 업태분류, 그리고 응용계층의 3 가지 관점으로 조망하고 각각 관점에 의하여 분류체계를 설명하였다. 정보산업 분류체계의 활용방안으로서 정보산업의 4 가지 업태, 즉 정보인프라구축산업, 정보제공산업, 정보가공산업, 정보응용산업 각각에 대한 세부적인 분류기준을 도출하여 전자상거래 시대의 새로운 산업과 가치의 이해를 제공할 수 있게 되었다.

  • PDF

Affective Representation and Consistency Across Individuals Responses to Affective Videos (정서 영상에 대한 정서표상 및 개인 간 반응 일관성)

  • Ahran Jo;Hyeonjung Kim;Jongwan Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.3
    • /
    • pp.15-28
    • /
    • 2023
  • This study examined the affective representation and response consistency among individuals using affective videos, a naturalistic stimulus inducing emotional experiences most similar to those in daily life. In this study, multidimensional scaling was conducted to investigate whether the various affective representations induced through video stimuli are located in the core affect dimensions. A cross-participant classification analysis was also performed to verify whether the video stimuli are well classified. Additionally, the newly developed intersubject correlation analysis was conducted to assess the consistency of affective representations across participant responses. Multidimensional scaling revealed that the video stimuli are represented well in the valence dimension, partially supporting Russell (1980)'s core affect theory. The classification results showed that affective conditions were successfully classified across participant responses. Moreover, the intersubject correlation analysis showed that the consistency of affective representations to video stimuli differed with respect to the condition. This study suggests that the affective representations and consistency of individual responses to affective videos varied across different affective conditions.

An Index Structure for Efficiently Handling Dynamic User Preferences and Multidimensional Data (다차원 데이터 및 동적 이용자 선호도를 위한 색인 구조의 연구)

  • Choi, Jong-Hyeok;Yoo, Kwan-Hee;Nasridinov, Aziz
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.7
    • /
    • pp.925-934
    • /
    • 2017
  • R-tree is index structure which is frequently used for handling spatial data. However, if the number of dimensions increases, or if only partial dimensions are used for searching the certain data according to user preference, the time for indexing is greatly increased and the efficiency of the generated R-tree is greatly reduced. Hence, it is not suitable for the multidimensional data, where dimensions are continuously increasing. In this paper, we propose a multidimensional hash index, a new multidimensional index structure based on a hash index. The multidimensional hash index classifies data into buckets of euclidean space through a hash function, and then, when an actual search is requested, generates a hash search tree for effective searching. The generated hash search tree is able to handle user preferences in selected dimensional space. Experimental results show that the proposed method has better indexing performance than R-tree, while maintaining the similar search performance.

Strategy for Visual Clustering (시각적 군집분석에 대한 전략)

  • 허문열
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.177-190
    • /
    • 2001
  • 전통적으로 많이 사용하는 군집분석의 방법들은 개체간의 거리를 고려하여 이들을 분류해 내는 것이며, 따라서 거리 측정 방법에 따라 여러 형태의 군집분석 방법이 나타나게 된다. 어떤 방법을 적용하던 간에 그 결과는 고정된 수치로써 나타난다. 다차원 자료의 구조파악이 몇 개의 수치로 나타나게 되면 어쩔 수 없이 정보의 손실이 발생하게 된다. 이를 보완하기 위해 시각적 매체를 동원하여 다차원 자료의 구조를 파악하는 연구가 있었으며, 이를 시각적 군집분석이라고 명명하고 있다. 본 연구에서는 시각적 군집분석에 대한 기본적 개념과 이를 위한 통계 도형의 활용, 구현방법 등에 대해 살펴보기로 한다.

  • PDF

Evolutionary Classification of Metabolic Networks by Hierarchical Clustering (클러스터링 기법을 통한 대사 네트웍의 진화적 분류)

  • 오석준;정제균;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10c
    • /
    • pp.226-228
    • /
    • 2002
  • 현재 유전자 서열 분석이 완료된 유전체들이 점점 늘어나고 있다. 따라서 이에 대한 방대한 정보가 생성됨에 따라 다양한 생물체들에 대하여 대사 네트웍을 통한 다차원적 분석이 가능하게 되었다. 대사 네트웍은 단백질 또는 효소들의 전체적인 상호작용을 표현하기 때문에 생물학적 메카니즘에 대하여 보다 풍부한 정보를 제공해 준다. 본 논문에서는 일차원적인 유전자 서열에 의한 종의 계통 분류가 아니라 메타 수준의 생리 구조적 비교를 통하여 계통분류학에 대하여 새로운 방법의 접근을 제안하고자 한다. 제안된 방법은 기존의 상동성 비교에 의한 계통 분류와 함께 좀 더 포괄적이고 거시적인 분석을 가능하게 한다.

  • PDF