In data-centric networks, various data items, such as temperature, humidity, etc. are sensed and stored in sensor nodes. As these attributes are mostly scalar values and inter-related, multi-dimensional range queries are useful. To process multi-dimensional range queries efficiently in data-centric storage, data addressing is essential. The Previous work focused on efficient query processing without considering overall network lifetime. To prolong network lifetime and support multi-dimensional range queries, we propose a dynamic data distribution method for multi-dimensional data, where data space is divided into equal-sized regions and linearized by using Hilbert space filling curve.
Proceedings of the Korean Information Science Society Conference
/
2001.10a
/
pp.151-153
/
2001
멀티미디어 데이터의 증가와 마이닝 기술의 발전으로 인해 멀티미디어 마이닝에 대한 관심이 증가하고 있다. 본 논문에서는 내용기반의 정보검색 기술과 다차원 다중 데이터큐브 구축기술을 통해 멀터미디어데이타의 마이닝을 구현하는 시스템에 대해 제안한다. 제안 시스템은 멀티미디어 데이터에 내용기반의 정보추출 시스템을 적용하여 성분백터를 추출하고 이를 메타데이타로 한 데이스베이스를 구축한다. 그리고 데이타베이스로부터 지식을 마이닝할 수 있도록 다차원 데이터큐브를 구축하여 빠른 데이터검색과 마이닝결과을 이용자에게 보여주는 모듈로 구성된다. 다차원 데이터큐브는 다중 어레이 구조로써 다차원 데이터를 저장하고, 저장된 여러 데이터 레벨 정보에서 가장 중요한 주제를 통합 생성하여 효율적으로 처리하므로 멀티미디어 데이터를 마이닝하는데 효과적인 방법이다. 또만 다차원데이타큐브를 다중으로 생성하는 방법은 데이터 마이닝 속도를 높이는데 효율적이다.
With the prevalence of multi-dimensional data such as images, content-based retrieval of data is becoming increasingly important. To handle multi-dimensional data, multi-dimensional index structures such as the R-tree, Rr-tree, TV-tree, and MVP-tree have been proposed. Numerous research results on how to effectively manipulate these structures have been presented during the last decade. Query processing strategies, which is important for reducing the processing time, is one such area of research. In this paper, we propose query processing algorithms for R-tree based structures. The novel aspect of these algorithms is that they make use of the notion of VP filtering, a concept borrowed from the MVP-tree. The filtering notion allows for delaying of computational overhead until absolutely necessary. By so doing, we attain considerable performance benefits while paying insignificant overhead during the construction of the index structure. We implemented our algorithms and carried out experiments to demonstrate the capability and usefulness of our method. Both for range query and incremental query, for all dimensional index trees, the response time using VP filtering was always shorter than without VP filtering. We quantitatively showed that VP filtering is closely related with the response time of the query.
Kang Hong-Koo;Kim Joung-Joon;Hong Dong-Suk;Han Ki-Joon
Proceedings of the Korean Information Science Society Conference
/
2006.06d
/
pp.52-54
/
2006
최근 데이타 중심 저장 방식의 센서 네트워크에서 다차원 범위 질의를 위한 인덱스들이 제시되고 있다. 기존에 제시된 다차원 범위 질의 인덱스는 일반적으로 다차원 속성 도메인과 센서 노드의 공간 도메인을 직접 매핑하여 데이타를 관리하는 구조로 되어있다. 그러나, 이러한 구조는 센서 노드의 공간 도메인을 정적으로 분할하기 때문에 센서 노드를 포함하지 않는 영역이 생성되어 데이타 저장 및 질의 처리에서 불필요한 통신이 발생하는 문제가 있다. 본 논문은 이러한 문제를 해결하기 위해 센서 노드의 공간 도메인이 센서 노드를 포함하도록 센서 네트워크 영역을 동적으로 분할하는 다차원 범위 질의 인덱스를 제안한다. 제안하는 인덱스는 센서 노드의 위치에 따라 센서 네트워크 영역을 동적으로 분할하여 데이타 저장 및 질의 처리시 목적 영역으로의 라우팅 경로를 최적화한다. 그리고, 분할된 영역은 모두 센서 노드를 포함함으로 센서 노드에서 발행하는 저장 부하를 분산시켜 전체 네트워크에서 발생하는 전체 통신비용을 줄인다. 실험 결과 제안한 인덱스는 DIM보다 전체 센서 네트워크와 hotspot의 통신비용에서 각각 최대 35%, 60%의 성능 향상을 보였다.
Due to recent increase in applications requiring huge amount of data such as spatial data analysis and image analysis, clustering on large databases has been actively studied. In a hierarchical clustering method, a tree representing hierarchical decomposition of the database is first created, and then, used for efficient clustering. Existing hierarchical clustering methods mainly adopted the bottom-up approach, which creates a tree from the bottom to the topmost level of the hierarchy. These bottom-up methods require at least one scan over the entire database in order to build the tree and need to search most nodes of the tree since the clustering algorithm starts from the leaf level. In this paper, we propose a novel top-down hierarchical clustering method that uses multidimensional indexes that are already maintained in most database applications. Generally, multidimensional indexes have the clustering property storing similar objects in the same (or adjacent) data pares. Using this property we can find adjacent objects without calculating distances among them. We first formally define the cluster based on the density of objects. For the definition, we propose the concept of the region contrast partition based on the density of the region. To speed up the clustering algorithm, we use the branch-and-bound algorithm. We propose the bounds and formally prove their correctness. Experimental results show that the proposed method is at least as effective in quality of clustering as BIRCH, a bottom-up hierarchical clustering method, while reducing the number of page accesses by up to 26~187 times depending on the size of the database. As a result, we believe that the proposed method significantly improves the clustering performance in large databases and is practically usable in various database applications.
The continuous data such as video streams and voice analog signals can be modeled as multidimensional data sequences(MDS's) in the feature space, In this paper, we investigate the clustering technique for multidimensional data sequence, Each sequence is represented by a small number by hyper rectangular clusters for subsequent storage and similarity search processing. We present a linear clustering algorithm that guarantees a predefined level of clustering quality and show its effectiveness via experiments on various video data sets.
MOLAP systems store data in a multidimensional away called a 'cube' and access them using way indexes. When a cube is placed into disk, it can be Partitioned into a set of chunks of the same side length. Such a cube storage scheme is called the chunk-based MOLAP cube storage scheme. It gives data clustering effect so that all the dimensions are guaranteed to get a fair chance in terms of the query processing speed. In order to achieve high space utilization, sparse chunks are further compressed. Due to data compression, the relative position of chunks cannot be obtained in constant time without using indexes. In this paper, we propose a bitmap index for chunk-based MOLAP cubes. The index can be constructed along with the corresponding cube generation. The relative position of chunks is retained in the index so that chunk retrieval can be done in constant time. We placed in an index block as many chunks as possible so that the number of index searches is minimized for OLAP operations such as range queries. We showed the proposed index is efficient by comparing it with multidimensional indexes such as UB-tree and grid file in terms of time and space.
Over the last decades, improvements in CPU speed have greatly exceeded those in memory and disk speeds by orders of magnitude and this enabled the use of compression techniques to reduce the database size as well as the query cost. Although compression techniques are employed in various database researches, there is little work on compressing multi-dimensional index structures. In this paper, we propose an efficient compression method called the hybrid encoding method (HEM) that is tailored to multi-dimensional indexing structures. The HEM compression significantly reduces the query cost and the size of multi-dimensional index structures. Through mathematical analyses and extensive experiments, we show that the HEM compression outperforms an existing method in terms of the index size and the query cost.
Proceedings of the Korean Information Science Society Conference
/
2006.06d
/
pp.34-36
/
2006
데이타 중심 저장 방식의 센서 네트워크는 비슷한 값의 데이타를 같은 센서 노드에 저장한다. 따라서 센서 네트워크가 확장되고 비슷한 값의 데이타가 빈번히 발생 시 하나의 센서 노드에 저장이 집중되는 문제가 있다. 기존의 데이타 중심 저장 방식에서 센서 데이타 저장 기법들은 저장 데이타의 효율적인 관리에만 치우쳐 센서 네트워크의 확장 시 하나의 센서 노드에 저장이 집중되는 문제점을 고려하지 않았다. 본 논문은 센서 네트워크의 확장 시 다차원 센서 데이타 저장의 효율적인 scalability를 지원하는 비균등 분할 기법을 제안한다. 제안한 기법은 센서 네트워크를 센서 노드의 분포에 따라 같은 센서 노드 개수를 갖는 영역으로 분할하고 분할된 각 영역 내에서 측정된 센서 데이타를 해당 영역에서 저장 및 관리함으로써 센서 네트워크의 확장에 따른 저장 비용을 줄였다. 그리고, 생성한 영역 개수를 센서 네트워크의 크기와 센서 노드의 개수, 발생하는 데이타의 양에 따라 증가시킴으로서 전체 센서 노드의 에너지 소모가 분산되어 기존의 방식과 비교하였을 때 센서 네트워크의 수명과 scalability가 향상되었다.
The performance of database applications with large sets of multidimensional data depends on the performance of its access methods and the underlying disk system. In modeling the disk system, even though modem disks are manufactured with multiple physical zones, conventional access methods have been developed based on a traditional disk model with many simplifying assumptions. Thus, there is a marked lack of investigation on how to enhance the performance of access methods given a zoned disk model. The paper proposes novel zoning techniques that can be applied to any multidimensional access methods, both static and dynamic, enhancing the effective data transfer rate of underlying disk system by fully utilizing its zone characteristics. Our zoning techniques include data placement algorithms for multidimensional index structures and accompanying localized query processing algorithms for range queries. The experimental results show that our zoning techniques significantly improve the query performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.