• Title/Summary/Keyword: 다지점 모의 발생

Search Result 17, Processing Time 0.027 seconds

Deelopment of a Multisite Daily Rainfall Simulation Model Using a Machine Learning (기계학습 기법을 이용한 다지점 일강수량 모의 모형 개발)

  • So, Byung-Jin;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.83-83
    • /
    • 2017
  • 수자원공학에서 일강수량 모의기법은 다양한 목적으로 활용되고 있지만, 일반적으로 홍수와 가뭄의 영향을 고려할 수 있는 수공구조물의 위험도 및 신뢰성 평가 및 수자원 계획을 수립하기 위한 입력 자료생성을 목적으로 활용된다. 유역 단위의 분석시 단일 지점에 대한 강수 모의 기법을 적용할 경우 각각의 지점에서 관측된 강수 자료의 시계열 및 통계치 특성이 효과적으로 재현되지만 공간적으로 발생하는 즉, 지점 간의 종속관계를 재현하지 못하는 문제가 발생한다. 이러한 이유로 공간적인 전이 특성이 있는 가뭄 분석 및 유역내 유출량의 공간적 변동 특성 분석에 단일지점별 모의 결과를 이용할 경우 관측 자료와 상반된 공간적 변동성으로 인하여 잘못된 가뭄 및 유출 분석 결과가 도출되는 문제점이 있다. 따라서, 실제적으로 발생하는 강수 특성을 반영한 유역 단위의 홍수 및 가뭄 등의 수문 분석을 위해서는 지점간의 종속성을 반영할 수 있는 다지점 강수 모의 모형의 적용이 필수적이다. 본 연구에서는 다지점 모의에 있어서, Wilks 모형의 지점별 시변동 특성과 공간상관성 재현 능력, HMM 모형이 갖는 강수 사상별로 분포된 양적 분포 패턴 재현 능력을 복합적으로 나타낼 수 있는 새로운 다지점 일강수량 모의 모형인 기계학습 기반 범주화 기법을 이용한 다지점 일강수량 모의 모형(ML-MRS)을 개발하였다. 또한, 지점별 강수량에 적용되는 확률분포모형은 Gamma 분포로 구성된 혼합모형을 적용하여 단일 확률 분포 모형의 자료 적합 문제를 개선하였다. 모의를 통한 일강수량 시계열 자료는 일 강수자료의 통계량을 효과적으로 모의하였으며, 다지점 모형의 모의 결과를 적용한 가뭄 모의 결과 관측 자료에서 나타나는 공간적 패턴이 재현되었다. 본 모형은 시 공간적 사상을 효과적으로 재현함으로서 지역의 변동특성을 반영한 가뭄, 홍수, 기상 현상 분석 등 활용도가 매우 높을 것으로 판단된다.

  • PDF

Nonstationary Markov Chain Model for Multi-site Daily Rainfall Simulation (비정상성 Markov Chain Model을 이용한 다지점 일강수량 모의)

  • Moon, Jang-Won;Kwon, Hyun-Han;Moon, Young-Il
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1495-1499
    • /
    • 2010
  • 최근에 기후변화 영향 분석을 위한 강수모의발생 기법에 대한 연구가 중요한 문제로 대두되고 있다. 기본적으로 모의된 강수량이 유역단위에서 의미 있는 값으로 수문모형에 입력자료로 활용되기 위해서는 강수지점간의 공간상관성의 유지가 매우 중요하다. 즉 지역적인 수문학적 거동을 유역단위에서 평가하기 위해서는 유역상관성을 고려할 수 있는 다지점(multisite) 모형의 개발이 필수적이다. 이러한 점에서 본 연구에서는 다지점 강수모의기법을 개발하였으며 비정상성 해석이 가능하도록 동역학적 강수모형을 구성하였다. 이를 한강유역 강수지점에 적용하여 모형의 적합성을 평가하였다.

  • PDF

Spatial Characteristics for Statistical Downscaling of Rainfall Data (강우의 통계학적 다운스케일링을 위한 공간특성 분석)

  • Lee, Jeong Eun;Lee, Jeongwoo;Kim, Chul Gyum;Kim, Nam Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.166-166
    • /
    • 2018
  • 수자원 분야의 기후변화 연구에서 유출분석을 위한 장기유출모형의 입력자료로 일단위의 기상자료가 요구된다. 이러한 일자료의 생성을 위해 통계학적 다운스케일링 기법 중 추계학적 기상모의모형이 가장 널리 적용되고 있다. 또한, 유역단위의 합리적 유출분석을 위해서는 기상모의모형을 이용한 일자료 발생시 기상관측지점 간의 공간상관성 확보가 선행되어야 한다. 이러한 문제점을 극복하기 위한 다지점 추계학적 기상모형의 개발 및 적용에 앞서 기존모형의 강우 발생과 크기와 관련된 주요요소들의 공간적인 특성을 분석하고자 하였다. 따라서, 본 연구에서는 국내 기상청 지점의 관측자료를 중심으로 모형의 강우발생과 관련된 강우/무강우 발생확률, 강우크기와 관련된 월강우량의 평균값, 월평균 강우량의 표준편차, 왜곡도를 산정하였다. 이를 중심으로 전국에 걸친 공간특성 분석을 통하여 다지점 추계학적 기상모의모형의 개발 및 적용시 고려해야 될 사항을 도출하고자 하였다.

  • PDF

A Proposed Simple Method for Multisite Point Rainfall Generation (일강우자료의 다지점 모의 발생을 위한 간단한 방법 제안)

  • Yu, Cheol-Sang;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.99-110
    • /
    • 2000
  • In this study we proposed a simple method for generating multi-site daily rainfall based on the 1-order Markov chain and considering the spatial correlation. The occurrence of rainfall is simulated by a simple 1st-order Markov chain and its intensity to be chosen randomly from the observed data. The spatial correlation between sites could be conserved as the rainfall intensity at each site is to be chosen consistently with the target site in time through generation. It is found that the generated daily rainfall data reproduce genera] characteristics of the observed data such as average, standard deviation, average number of wet and dry days, but the clustering level in time is somewhat loosened. Thus, the lag-I correlation coefficient of the generated data gave smaller value than the observed, also the average lengths of wet run and dry run and the wet-to-wet and dry-to-dry probabilities were a bit less than the observed. This drawback seems to be overcome somewhat by choosing a proper site representing overall basin characteristics or by use of more detailed states of rainfall occurrence.

  • PDF

A Development of Multi-site Rainfall Simulation Model Using Piecewise Generalize Pareto Distribution (불연속 분포를 이용한 다지점 강수모의발생 기법 개발)

  • So, Byung-Jin;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.123-123
    • /
    • 2012
  • 일강수량은 수공구조물 설계 및 수자원계획을 수립하기 위한 입력 자료로 이용된다. 일반적으로 수자원계획은 장기적인 목적을 가지고 수행되어지며, 장기간의 일강수량 자료를 필요로 한다. 하지만 장기간의 일강수량 자료의 획득의 어려움으로 단기간의 일강수량자료를 이용하여 모의한 장기간 강수자료를 이용하게 된다. 이처럼 수자원계획의 수립에 있어서 일강수량 모의기법의 성능은 수자원계획의 신뢰성 및 결과에 큰 영향을 준다. 일강수량 모의기법은 국내외적으로 매우 활발하게 이루어지고 있으며, 수자원계획 및 수공구조물 설계 외에도 매우 다양한 목적으로 활용되어 지고 있다. 일강수량을 모의기법 중 강수계열의 단기간의 기억(memory)을 활용한 Markov Chain 모형이 가장 일반적이지만, 기존 Markov Chain 모형을 통한 일강수량 모의는 극치강수량을 재현하기 어렵다는 문제점이 있다. 또한, 일강수량 모의 기법의 목적인 수자원계획 및 수공구조물 설계 등의 입력자료로 활용되어지기 위해서는 모의 결과가 유역내 지점별 공간 상관성을 재현함으로써 모형의 우수성과 자료결과의 신뢰성을 확보할 수 있어야 하겠다. 이러한 점에서 본 연구에서는 내삽에서 우수한 재현능력을 갖는 핵 밀도함수와 극치강수량 재현에 유리한 GPD분포의 특징을 함께 고려할 수 있는 불연속 Kernel-Pareto Distribution 기반에 공간상관성 재현 알고리즘을 결합한 일강수량모의기법을 개발하였다. 한강유역의 18개 강수지점에 대해서 기존 Gamma분포를 사용한 Markov Chain 모형과 본 연구에서 제안한 방법을 적용하여 모형을 평가해 보고자 한다. Gamma 분포기반 Markov Chain 모형의 경우 일강수량 모의 시 1차모멘트인 평균과 2-3차 모멘트 모두 효과적으로 재현하지 못하는 문제점이 나타났다. 그러나 본 연구에서 적용한 다지점 불연속 Kernel-Pareto 분포 모형은 강수계열의 평균적인 특성뿐만 아니라 표준편차 및 왜곡도의 경우에도 관측치의 통계특성을 매우 효과적으로 재현하며, 100년빈도 강수량 모의결과 기존 모의모형의 문제점을 보완할 수 있는 개선된 결과를 보여주었다. 본 연구에서 제시한 방법론은 유역내의 공간상관성을 재현하며, 평균 및 중간값 등 낮은 차수의 모멘트 등 일강수량 분포특성을 더욱 효과적으로 모의할 수 장점을 확인하였다.

  • PDF

A Development of Multivariate Stochastic Model for Soil Moisture Simulation (다변량 추계학적 토양수분 모의 기법 개발)

  • Park, Jong-Hyeon;Lee, Jong-Hwa;Kim, Seong-Joon;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.409-409
    • /
    • 2017
  • 유역단위에서 수문모델링을 수행함에 있어 토양수분은 물수지 관점에서 매우 중요한 인자로 고려된다. 더욱이, 최근 발생빈도가 커지고 있는 가뭄을 효과적으로 평가하고 예측하는 데에도 활용성이 매우 큰 것으로 인식되고 있다. 이러한 중요성에도 불구하고, 가용자료의 부족, 자료의 부정확성 등으로 인해 실제 유역모델링을 수행하는데 있어 활용도는 매우 적다. 이러한 점에서 본 연구에서는 동질성이 확보된 유역단위를 기준으로 다지점의 토양수분 자료를 추계학적으로 모의할 수 있는 기법을 개발하고자 한다. 토양함수자료는 지속성(persistence)이 매우 큰 특징을 가진다. 즉, 상태의 지속성이 크며 메모리가 오랫동안 유지된다는 점에서 추계학적 모의가 가능할 것으로 판단된다. 이러한 지속성을 이용함과 동시에 토양함수를 다양한 상태로 분리하고 이들 상태들간의 천이확률을 효과적으로 모의할 수 있다면 관측 토양함수 자료의 통계적 특성 재현이 가능하다. 본 연구에서는 용담댐 유역에 대해서 개발된 모형을 적용하고 활용성을 검토하고자 한다.

  • PDF

Development of a Stochastic Precipitation Generation Model for Generating Multi-site Daily Precipitation (다지점 일강수 모의를 위한 추계학적 강수모의모형의 구축)

  • Jeong, Dae-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.397-408
    • /
    • 2009
  • In this study, a stochastic precipitation generation framework for simultaneous simulation of daily precipitation at multiple sites is presented. The precipitation occurrence at individual sites is generated using hybrid-order Markov chain model which allows higher-order dependence for dry sequences. The precipitation amounts are reproduced using Anscombe residuals and gamma distributions. Multisite spatial correlations in the precipitation occurrence and amount series are represented with spatially correlated random numbers. The proposed model is applied for a network of 17 locations in the middle of Korean peninsular. Evaluation statistics are reported by generating 50 realizations of the precipitation of length equal to the observed record. The analysis of results show that the model reproduces wet day number, wet and dry day spell, and mean and standard deviation of wet day amount fairly well. However, mean values of 50 realizations of generated precipitation series yield around 23% Root Mean Square Errors (RMSE) of the average value of observed maximum numbers of consecutive wet and dry days and 17% RMSE of the average value of observed annual maximum precipitations for return periods of 100 and 200 years. The provided model also reproduces spatial correlations in observed precipitation occurrence and amount series accurately.

A Generation of Synthetic Monthly Streamflows in the Han River Basin by Disaggregation Model (한강수계에 있어서 분해모형에 의한 모의 월유량 발생)

  • 강관수;선우중호
    • Water for future
    • /
    • v.20 no.2
    • /
    • pp.107-116
    • /
    • 1987
  • The stochastic model has been developed for synthetic generation of hydrologic series that would be needed in the analysis, planning, design and operation of water resources system. In this study, after generating the yearly streamflows by multisite AR(1) model using the historical data in the Han River Basin, the monthly streamflows is generated by the disaggregation model. The model is verified of its applicability to domestic rivers, which is obtained through the statistical analysis and good ness of fit test using synthetic streamflows generated.

  • PDF

A Multivariate Model Development For Stream Flow Generation (다변량 모형에 의한 하천유량의 모의 발생)

  • 정상만
    • Water for future
    • /
    • v.24 no.4
    • /
    • pp.67-72
    • /
    • 1991
  • Various modeling approaches to study along term behavior of streamflow or groundwater storagge have been conducted. In this study, a Multivariate AR (1) Model has been applied to generate monthly flows of the one key station which has historical flows using monthly flows of the three subordinate stations. The Model performance was examined using statistical comparisons between the historical and generated monthly series such as mean, various, skewness. Also, the correlation coefficients(lag-zero, and lag-one)between the two monthly flows were compared. The results showed that the modeled generated flows were statistically similar to the historical flows.

  • PDF

A Study on the Stochastic Modeling for Stream Flow Generation (하천유량의 모의발생을 위한 추계학적 모형의 적용에 관한 연구)

  • Lee, Joo-Heon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.2 s.2
    • /
    • pp.115-121
    • /
    • 2001
  • The purpose of the synthetic generation of monthly river flows based on the short term observed data by means of stochastic models is to provide abundant input data to the water resources systems of which the system performance and operation policy are to be determined beforehand. In this study, a multivariate autoregressive model has been applied to generate monthly flows of the multi sites considering the correlations between each site. The model performance was examined using statistical comparisons between the historical and generated monthly series such as mean, variance, skewness and correlation coefficients. The results of this study showed that the modeled generated flows were statistically similar to the historical flows.

  • PDF