• Title/Summary/Keyword: 다중 GCM

Search Result 20, Processing Time 0.026 seconds

Development and assessment of framework for selecting multi-GCMs considering Asia monsoon characteristics (아시아 몬순특성을 고려한 다중 GCMs 선정방법 개발 및 평가)

  • Kim, Jeong-Bae;Kim, Jin-Hoon;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.9
    • /
    • pp.647-660
    • /
    • 2020
  • The objectives of this study are to develop a framework for selecting multi-GCMs considering Asia monsoon characteristics and assess it's applicability. 12 climate variables related to monsoon climates are selected for GCM selection. The framework for selecting multi-GCMs includes the evaluation matrix of GCM performance based on their capability to simulate historical climate features. The climatological patterns of 12 variables derived from individual GCM over the summer monsoon season during the past period (1976-2005) and they are compared against observations to evaluate GCM performance. For objective evaluation, a rigorous scoring rule is implemented by comparing the GCM performance based on the results of statistics between historical simulation derived from individual GCM and observations. Finally, appropriate 5 GCMs (NorESM1-M, bcc-csm1-m, CNRM-CM5, CMCC-CMS, and CanESM2) are selected in consideration of the ranking of GCM and precipitation performance of each GCM. The selected 5 GCMs are compared with the historical observations in terms of monsoon season and monthly mean to validate their applicability. The 5 GCMs well capture the observational climate characteristics of Asia for the 12 climate variables also they reduce the bias between the entire GCM simulations and the observational data. This study demonstrates that it is necessary to consider various climate variables for GCM selection and, the method introduced in this study can be used to select more reliable climate change scenarios for climate change assessment in the Asia region.

Continuous Runoff Analysis for the Han River Basin using Multiple GCMs and HSPF Model (다중 GCMs과 HSPF 모형을 이용한 한강유역 장기유출량 분석)

  • Park, Jihoon;Jung, Imgook;Lee, Eun-Jeong;Cho, Jaepil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.35-35
    • /
    • 2018
  • 본 연구의 목적은 한강유역을 대상으로 다중 GCMs (General Circulation Models)을 이용하여 장기유출량을 분석하는 데 있다. 기후변화 전망을 분석하기 위해 총 13개의 GCMs을 선정하여 사용하였다. SDQDM (Spatial Disaggregation-Quantile Delta Mapping) 방법을 이용하여 GCMs을 60개 종관기상관측장비 (Automated Synoptic Observing System, ASOS)에 대해 상세화하였다. GCMs은 총 6개의 변수(강수, 최고 기온, 최저기온, 풍속, 상대습도, 일사량)를 제공하였다. 장기유출량 분석은 투수지역과 불투수지역을 모두 고려할 수 있는 HSPF 모형을 선정하여 수행하였다. 장기유출량의 공간적인 범위는 한강유역의 16개 중권역을 기준으로 선정하였고, 시간적인 범위는 과거 기준 기간 (Reference period: 1976-2005), 미래 3개 기간 (Near future period: 2011-2040, Mid-century period: 2041-2070, Distance future period: 2071-2099)으로 30년 단위로 구분하여 선정하였다. 본 연구는 13개의 GCM을 사용하여 추정된 장기유출량의 연간 및 계절적 평균과 변동성을 분석하였다. 본 연구에서 HSPF 모형을 활용하여 분석한 결과는 복잡한 한강유역의 특성을 적절히 반영하여, 기후변화에 따른 수자원 계획 및 통합 유역 관리를 수립하기 위한 기초 자료로 활용될 수 있을 것이라 사료된다.

  • PDF

Assessment of Climate Change Impacts on Water Resources in the Gyeongan-cheon Watershed Using Multiple GCMs (다중 GCM 미래 기후자료를 이용한 경안천 유역의 수자원에 대한 기후변화 영향 평가)

  • Kim, Chul-Gyum;Cho, Jaepil;Kim, Hyeonjun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.1
    • /
    • pp.119-126
    • /
    • 2020
  • This study analyzed the effects of future climate change on water resources in the Gyeongan-cheon watershed of the Han River. Considering the uncertainties of GCM climate data, future data using 16 GCMs and SQM downscaling method are used. And SWAT model was applied to simulate the hydrological changes from the past to the future. The maximum to minimum difference according to GCM for the future period (2010-2099) was about 1,500 mm of annual precipitation, 150 mm of evapotranspiration, 1,380 mm of runoff, and the deviation from the mean was -40 % to +60 % of precipitation, ±15 % of evapotranspiration, -60 % to +90 % of runoff, which means that the variability is very high according to GCM. The impacts of climate change over the three future periods showed that precipitation, evapotranspiration, and runoff were expected to increase gradually toward the far future (2070-2099), and would be relatively larger under the RCP 8.5 scenario. On a monthly basis, it was analyzed that precipitation and runoff increased in July to September, while the evapotranspiration decreased in July and August, and increased in September and October. The results of this study are expected to be helpful in understanding the future climate impacts of various GCM data and the uncertainties associated with GCMs.

Flood damage cost projection in Korea using 26 GCM outputs (26 GCM 결과를 이용한 미래 홍수피해액 예측)

  • Kim, Myojeong;Kim, Gwangseob
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1149-1159
    • /
    • 2018
  • This study aims to predict the future flood damage cost of 113 middle range watersheds using 26 GCM outputs, hourly maximum rainfall, 10-min maximum rainfall, number of days of 80 mm/day, daily rainfall maximum, annual rainfall amount, DEM, urbanization ratio, population density, asset density, road improvement ratio, river improvement ratio, drainage system improvement ratio, pumping capacity, detention basin capacity and previous flood damage costs. A constrained multiple linear regression model was used to construct the relationships between the flood damage cost and other variables. Future flood damage costs were estimated for different RCP scenarios such as 4.5 and 8.5. Results demonstrated that rainfall related factors such as annual rainfall amount, rainfall extremes etc. widely increase. It causes nationwide future flood damage cost increase. Especially the flood damage cost for Eastern part watersheds of Kangwondo and Namgang dam area may mainly increase.

Construction of Intensity-Duration-Frequency Curve Using a Spatial-Temporal Downscaling Approach of GCM (GCM의 시간적, 공간적 축소화기법 이용한 미래의 IDF곡선 생성)

  • Oh, Jin-Ho;Chung, Eun Sung;Lee, Kil Seong
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.175-175
    • /
    • 2011
  • IDF 곡선은 수리구조물의 설계에 이용되며 본 연구에서는 기후변화를 고려한 GCM의 시간적 공간적 축소화기법을 통하여 미래의 IDF 곡선을 생성하였다. GCM자료로는 HadCM3과 CGCM3의 지역주의와 경제발전을 지향하는 A2시나리오를 이용하였다. GCM자료에 대한 공간적인 축소화기법으로 다중회귀 모형인 SDSM(Statistical DownScaling Model)을 이용하여 2030년, 2050년, 2080년의 미래의 일강우 자료를 생성하였다. 이를 다시 시간적 축소화기법인 GEV분포를 이용한 Scaling-Invariance기법을 적용하여 시단위의 강우자료를 생성하였다. 이를 통해 최종적으로 HadCM3과 CGCM3에 대한 각각 미래의 IDF곡선을 생성하였다. CGCM3의 경우 지속적인 강우강도의 증가를 보였지만 HadCM3의 경우 2050년대 감소하다 2080년대 다시 증가하는 양상을 보였다. 또한 CGCM3의 경우 HadCM3의 경우보다 좀 더 높은 강우 강도를 보였다. 본 연구의 대상지역은 서울지역이며 생성된 자료의 신뢰성을 확보하기위하여 서울기상관측소의 1961년부터~2000년까지의 일단위 강우자료를 이용하여 검 보정을 수행하였다.

  • PDF

Evaluation of Agro-Climatic Index Using Multi-Model Ensemble Downscaled Climate Prediction of CMIP5 (상세화된 CMIP5 기후변화전망의 다중모델앙상블 접근에 의한 농업기후지수 평가)

  • Chung, Uran;Cho, Jaepil;Lee, Eun-Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.2
    • /
    • pp.108-125
    • /
    • 2015
  • The agro-climatic index is one of the ways to assess the climate resources of particular agricultural areas on the prospect of agricultural production; it can be a key indicator of agricultural productivity by providing the basic information required for the implementation of different and various farming techniques and practicalities to estimate the growth and yield of crops from the climate resources such as air temperature, solar radiation, and precipitation. However, the agro-climate index can always be changed since the index is not the absolute. Recently, many studies which consider uncertainty of future climate change have been actively conducted using multi-model ensemble (MME) approach by developing and improving dynamic and statistical downscaling of Global Climate Model (GCM) output. In this study, the agro-climatic index of Korean Peninsula, such as growing degree day based on $5^{\circ}C$, plant period based on $5^{\circ}C$, crop period based on $10^{\circ}C$, and frost free day were calculated for assessment of the spatio-temporal variations and uncertainties of the indices according to climate change; the downscaled historical (1976-2005) and near future (2011-2040) RCP climate sceneries of AR5 were applied to the calculation of the index. The result showed four agro-climatic indices calculated by nine individual GCMs as well as MME agreed with agro-climatic indices which were calculated by the observed data. It was confirmed that MME, as well as each individual GCM emulated well on past climate in the four major Rivers of South Korea (Han, Nakdong, Geum, and Seumjin and Yeoungsan). However, spatial downscaling still needs further improvement since the agro-climatic indices of some individual GCMs showed different variations with the observed indices at the change of spatial distribution of the four Rivers. The four agro-climatic indices of the Korean Peninsula were expected to increase in nine individual GCMs and MME in future climate scenarios. The differences and uncertainties of the agro-climatic indices have not been reduced on the unlimited coupling of multi-model ensembles. Further research is still required although the differences started to improve when combining of three or four individual GCMs in the study. The agro-climatic indices which were derived and evaluated in the study will be the baseline for the assessment of agro-climatic abnormal indices and agro-productivity indices of the next research work.

Multi-class Cancer Classification by Integrating OVR SVMs based on Subsumption Architecture (포섭 구조기반 OVR SVM 결합을 통한 다중부류 암 분류)

  • Hong Jin-Hyuk;Cho Sung-Bae
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.06a
    • /
    • pp.37-39
    • /
    • 2006
  • 지지 벡터 기계(Support Vector Machine; SVM)는 기본적으로 이진분류를 위해 고안되었지만, 최근 다양한 분류기 생성전략과 결합전략이 고안되어 다중부류 분류에도 적용되고 있다. 본 논문에서는 OVR(One-Vs-Rest) 전략으로 생성된 SVM을 NB(Naive Bayes) 분류기를 이용하여 동적으로 구성함으로써, OVR SVM을 이용한 다중부류 분류 시스템에서 자주 발생하는 동점을 효과적으로 해결하는 방법은 제안한다. 이 방법을 유전발현 데이터를 이용한 다중부류 암 분류에 적용하였는데, 고차원의 데이터로부터 NB 분류기 구축에 유용한 유전자를 선택하기 위해 Pearson 상관계수를 사용하였다. 14개의 암 유형과 16,063개의 유전발현 수준을 가지는 대표적인 다중부류 암 분류 데이터인 GCM 암 데이터에 적용하여 제안하는 방법의 유용성을 확인하였다.

  • PDF

Development of Multisite Spatio-Temporal Downscaling Model for Rainfall Using GCM Multi Model Ensemble (다중 기상모델 앙상블을 활용한 다지점 강우시나리오 상세화 기법 개발)

  • Kim, Tae-Jeong;Kim, Ki-Young;Kwon, Hyun-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.327-340
    • /
    • 2015
  • General Circulation Models (GCMs) are the basic tool used for modelling climate. However, the spatio-temporal discrepancy between GCM and observed value, therefore, the models deliver output that are generally required calibration for applied studies. Which is generally done by Multi-Model Ensemble (MME) approach. Stochastic downscaling methods have been used extensively to generate long-term weather sequences from finite observed records. A primary objective of this study is to develop a forecasting scheme which is able to make use of a MME of different GCMs. This study employed a Nonstationary Hidden Markov Chain Model (NHMM) as a main tool for downscaling seasonal ensemble forecasts over 3 month period, providing daily forecasts. Our results showed that the proposed downscaling scheme can provide the skillful forecasts as inputs for hydrologic modeling, which in turn may improve water resources management. An application to the Nakdong watershed in South Korea illustrates how the proposed approach can lead to potentially reliable information for water resources management.

An Analysis of the Effect of Climate Change on Byeongseong Stream's Hydrologic and Water Quality Responses Using CGCM's Future Climate Information (CGCM 미래기후정보를 이용한 기후변화가 병성천 유역 수문 및 수질반응에 미치는 영향분석)

  • Choi, Dae-Gyu;Kim, Mun-Sung;Kim, Nam-Won;Kim, Sang-Dan
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.11
    • /
    • pp.921-931
    • /
    • 2009
  • For the assessment of climate change impacts for the Byeongseong stream, CGCM 3.1 T63 is selected as future climate information. The projections come from CGCM used to simulate the GHG emission scenario known as A2. Air temperature and precipitation information from the GCM simulations are converted to regional scale data using the statistical downscaling method known as MSPG. Downscaled climate data from GCM are then used as the input data for the SWAT model to generate regional runoff and water quality estimates in the Byeongseong stream. As a result of simple sensitivity analysis, the increase of CO2 concentration leads to increase water yield through reduction of evapotranspiration and increase of soil water. Hydrologic responses to climate change are in phase with precipitation change. Climate change is expected to reduce water yields in the period of 2021-2030. In the period of 2051-2060, stream flow is expected to be reduced in spring season and increased in summer season. While soil losses are also in phase with water yields, nutrient discharges (i.e., total nitrogen) are not always in phase with precipitation change. However, it should be noted that there are a lot of uncertainties in such multiple-step analysis used to convert climate information from GCM-based future climate projections into hydrologic information.