• Title/Summary/Keyword: 다중 위성항법

Search Result 79, Processing Time 0.024 seconds

A Study on the Navigation Parameters of L1, C/A GPS through the Experimental and Statistical Analysis (실험 및 통계적 분석을 통한 L1, C/A코드 GPS의 항법 파라미터연구)

  • Ko, Kwang-Soob
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1959-1964
    • /
    • 2015
  • This research was focused on the analysis of navigation parameters from the received L1, C/A signal of the recent GPS, which has advanced with the SA policy change and the GPS modernization policy by the United States. It was done as a first step study for a comprehensive analysis on the multiple satellite navigation systems which will be adding or separating GPS signal. In particular, the statistical analysis on the GDOP change and positional accuracy based on the geocentric and spherical coordinate systems were investigated with carrier- to-noise ratio and the satellite geometry, The obtained GDOP values of HDOP, PDOP, VDOP are 0.5, 1.2, and 1.1, respectively in deviation. In addition, the positioning accuracies with these GDOP values were analyzed in the ellipsoidal and ECEF coordinates.

Analysis of Position Error Variance on GNSS Augmentation System due to Non-Common Measurement Error (비공통오차 증가로 인한 위성항법보강시스템 위치 오차 분산 변화 분석)

  • Jun, Hyang-Sig;Ahn, Jong-Sun;Yeom, Chan-Hong;Lee, Young-Jae;Choi, Young-Kiu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.197-200
    • /
    • 2008
  • A GNSS augmentation system provides precise position information using corrected GNSS pseudorange measurements. Common bias errors are corrected by PRC (Pseudorange Correction) between reference stations and a rover. However non-common errors (Ionospheric and Tropospheric noise error) are not corrected. Using position error variance this paper analyzes non-common errors (noise errors) of ionosphere and troposphere wet vapor.

  • PDF

Detection Performance for Combining Multiband GNSS Signals in Broadband Jamming Environments (광대역 전파방해환경에서 다중대역 GNSS 신호결합에 따른 검파성능)

  • Yoo, Seung-Soo;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5C
    • /
    • pp.444-452
    • /
    • 2012
  • The detection performances, in this paper, are derived according to combination of the multiband GNSS signals in broadband jamming environments. The detection probabilities depending on the false alarm probabilities are derived and presented via Monte-Carlo simulation under the assumption as follows: the GNSS signals are perfectly orthogonal and simultaneously received by the receiver using non-coherent correlation.

A Study on the Effects and the Countermeasure of Sea Surface Reflection Waves in Pseudolite Navigation Systems (의사위성 항법시스템에서의 해수면 반사파가 미치는 영향 분석 및 대처방안에 대한 연구)

  • Park, Jun-Pyo;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.505-514
    • /
    • 2014
  • The effects of reflected wave of the sea on pseudolite ranging accuracy are analysed in this paper, when a pseudolite navigation system is used for wide area outdoor applications such as aircraft and vessels positioning. Methods for minimizing the influence of sea surface reflection wave were proposed. The methods include the appropriate correlator in pseudolite navigation system through the correlation performance comparison analysis in receiver design, the use of the technology of multiple antennas, and locating the transmitting station antenna on an appropriate position. From the results of experiments, the method of locating the antenna position shows the most reliable performance against the effect of surface reflection wave. The analysis results of the ranging accuracy improvement are addressed, when the multipath caused by sea surface reflection exists.

Performance Analysis and Design of Variable Bandwidth Multi-Mode GNSS Receiver for Anti-Jamming (항재밍용 가변대역 다중모드 위성항법수신기 설계 및 성능분석)

  • Ahn, Seung-Gwan;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.133-139
    • /
    • 2010
  • GNSS receiver which uses the weak satellite signal is very vulnerable to the intentional jamming or non-intentional electromagnetic interference. It is a very simple method among the use method of GNSS receiver to vary tracking loop bandwidth of satellite signal appropriately as the jamming signal level. In this paper, this anti-jamming performance is experimented and analyzed in the laboratory and the anechoic chamber by the GNSS simulator to generate the satellite signal and the jamming signal generator to generate the jamming signal.

A Novel Short Delay Multipath Mitigation Algorithm for a GNSS based Land Vehicle in Urban Environment (도심환경에서의 GNSS 기반 육상 이동체를 위한 짧은 지연 다중경로 감쇄 기법)

  • Lim, Deok Won;Chun, Sebum;Heo, Moon Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.557-565
    • /
    • 2018
  • For GNSS navigation in urban environment, a novel short delay multipath mitigation algorithm is proposed in this paper. This algorithm detects which satellite's signal is the multipath signal by using the constraint that GNSS receiver is equipped in a ground vehicle, then estimate new position after separating the measurement of that satellite. A criterion for detecting and validating the multipath signal depends on the performance grade of the GNSS receiver and the dynamics of the vehicle. In order to evaluate the proposed algorithm, the real data had been collected at the multipath environment of 4 scenarios. By post-processing the real data with both of the multipath mitigation algorithm in the receiver and the proposed algorithm, it can be checked that the position errors were less than 5 meters except the case that the number of visible satellite is lower than 5.

Annual Prediction of Multi-GNSS Navigation Performance in Urban Canyon (도심지역에서의 연도별 다중위성항법 통합성능 예측)

  • Seok, Hyo Jeong;Park, Byung Woon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.1
    • /
    • pp.71-78
    • /
    • 2016
  • In the paper, we predict the number of multi-GNSS satellites and visible satellites with the navigation satellite launch plans and their nominal orbit parameters. Based on the methodology, the multi-GNSS navigation performance and DOP (Dilution of Precision) variation from 2015 to 2020 were forecasted by the Matlab simulation. To calculate the position using the multi-GNSS constellation, we determined the time-offset between the two different systems. Two different algorithms were considered for the sake of time-offset determination; that of each was applied to system level and user side. Also, the results from two algorithms were compared for evaluating each performance. For the reality, we applied the 3D map information to the simulation, which is expected to contribute for predicting the future navigation performance in urban canyon.

Development Approach of Fault Detection Algorithm for RNSS Monitoring Station (차세대 RNSS 감시국을 위한 고장 검출 알고리즘 개발 방안)

  • Da-nim, Jung;Soo-min Lee;Chan-hee Lee;Eui-ho Kim;Heon-ho Choi
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.1-14
    • /
    • 2024
  • Global navigation satellite system (GNSS) providing position, navigation and timing (PNT) services consist of satellite, ground, and user systems. Monitoring stations, a key element of the ground segment, play a crucial role in continuously collecting satellite navigation signals for service provision and fault detection. These stations detect anomalies such as threats to the signal-in-space (SIS) of satellites, receiver issues, and local threats. They deliver received data and detection results to the master station. This paper introduces the main monitoring algorithms and measurement pre-processing processes for quality assessment and fault detection of received satellite signals in current satellite navigation system monitoring stations. Furthermore, it proposes a strategy for the development of components, architecture, and algorithms for the new regional navigation satellite system (RNSS) monitoring stations.

Multi-Filter Fusion Technique for INS/GPS (INS/GPS를 위한 다중 필터 융합 기법)

  • 조성윤;최완식;김병두;조영수
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.48-55
    • /
    • 2006
  • A multi-filter fusion technique is proposed and this technique is applied to the INS/GPS integrated system. IIR-type EKF and FIR-type RHKF filter are fused to provide the advantages of these filters based on the adaptive mixing probability calculated by the residuals and the residual covariance matrices of the filters. In the INS/GPS, this fusion filter can provide more robust navigation information than the conventional stand-alone filter.

Optimal Scheduling of Satellite Tracking Antenna of GNSS System (다중위성 추적 안테나의 위성추적 최적 스케쥴링)

  • Ahn, Chae-Ik;Shin, Ho-Hyun;Kim, You-Dan;Jung, Seong-Kyun;Lee, Sang-Uk;Kim, Jae-Hoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.666-673
    • /
    • 2008
  • To construct the accurate radio satellite navigation system, the efficient communication each satellite with the ground station is very important. Throughout the communication, the orbit of each satellite can be corrected, and those information will be used to analyze the satellite satus by the operator. Since there are limited resources of ground station, the schedule of antenna's azimuth and elevation angle should be optimized. On the other hand, the satellite in the medium earth orbit does not pass the same point of the earth surface due to the rotation of the earth. Therefore, the antenna pass schedule must be updated at the proper moment. In this study, Q learning approach which is a form of model-free reinforcement learning and genetic algorithm are considered to find the optimal antenna schedule. To verify the optimality of the solution, numerical simulations are conducted.