• 제목/요약/키워드: 다중선형회귀분석모형

검색결과 105건 처리시간 0.029초

국내 지면온도의 시공간적 변화 분석 (Analyzing Spatial and Temporal Variation of Ground Surface Temperature in Korea)

  • 구민호;송윤호;이준학
    • 자원환경지질
    • /
    • 제39권3호
    • /
    • pp.255-268
    • /
    • 2006
  • 58개 기상관측소에서 최근 22년간(1981-2002) 측정된 기상 자료를 이용하여 국내의 기온(SAT) 및 지면온도(GST)의 시공간적 변동 경향을 분석하였다. 먼저 관측 자료로부터 각 관측소의 평균기온(MSAT)과 평균지면온도(MGST)를 계산하였으며, 다중선형회귀분석을 통해 MSAT와 MGST를 예측할 수 있는 회귀식을 산정하였다. 회귀모형의 회귀변수는 관측소의 위도 및 고도이다. 회귀모형의 추정치와 실제 관측값의 결정계수($R^2$)는 각각 0,92와 0.94로 나타나 모형의 예측 정확성이 매우 높은 것으로 분석되었다. MGST는 지열펌프 시스템 설계의 주요 입력 변수이므로 최근 지열에너지자원 활용 분야에서 매우 중요하게 다루어지는 변수이다. 따라서 제시된 회귀모형은 신뢰할만한 관측 자료가 없는 지역에서 MGST를 추정하는데 매우 유용하게 이용될 수 있을 것으로 예상된다. SAT 자료에 대한 선헝회귀분석을 통해 지구온난화 및 도시화에 기인한 기온 상승의 장기 추세 변동성을 탐색하였다. 1개 관측소를 제외한 57개 관측소에서 $0.005{\sim}0.088^{\circ}C/yr$ 범위의 기온증가율을 가지는 추세 변동이 확인되었다. 또한 GST에 영향을 미치는 기상요소로서 일사량, 지구복사, 강수량 및 적설량 자료를 분석하였다. GST는 주로 SAT 및 일사량에 의하여 결정되지만 강수 및 증발에 의한 토양의 열용량 변화, 적설에 의한 대기와 지표면 차단, 지구복사에 영향을 줄 수 있는 대기의 조건 변화 등이 복합적인 변동 요인으로 작용하는 것으로 나타났다.

한국 프로스포츠 선수들의 연봉에 대한 다변량적 분석 (A Multivariate Analysis of Korean Professional Players Salary)

  • 송종우
    • 응용통계연구
    • /
    • 제21권3호
    • /
    • pp.441-453
    • /
    • 2008
  • 프로스포츠 선수들의 연봉은 선수들의 개인 성적과 팀에 대한 기여도 등으로 결정된다는 가정하에 프로농구와 프로야구 선수들의 전년도 성적으로 다음해 연봉을 예측 분석하였다. 분석에 있어서 data visualization 기법을 통해 변수사이의 관계, 이상점 발견, 모형진단등을 하였다. 다중선형회귀 모형(Multiple Linear Regression)과 트리모형(Regression Tree)을 이용해서 자료를 분석하고 모델간 비교를 했으며, Cross-Validation을 이용해서 최적모델을 선택하였다. 특히, 자동으로 변수선택을 하는 stepwise regression방법을 그냥 사용하기보다는 먼저 설명변수들 사이의 관계나 설명변수와 반응변수 사이의 관계등을 조사하고 나서 이를 통해 선택된 변수들을 가지고 stepwise regression과 regression tree 방법론을 이용해서 적절한 변수 및 최종 모형을 선택하였다. 분석결과, 프로농구의 경우에는 경기당 득점, 어시스트, 자유투 성공수, 경력 등이 중요한 변수였고, 프로야구 투수의 경우에는 경력, 9이닝 당 삼진 수, 방어율, 피홈런 수 등이 중요한 변수였고, 프로야구 타자의 경우에는 경력, 안타 수, FA(자유계약)유무 여부 등이 중요한 변수였다.

GLS와 Bass 모형을 결합한 하이브리드 모형을 이용한 영화 관객 수 예측 (Prediction of movie audience numbers using hybrid model combining GLS and Bass models)

  • 김보경;임창원
    • 응용통계연구
    • /
    • 제31권4호
    • /
    • pp.447-461
    • /
    • 2018
  • 국내 영화 산업 매출은 매년 증가하고 있다. 극장은 영화의 1차 판매 경로이며, 극장을 이용하는 관객 수는 부가판권에 영향을 준다. 따라서 극장을 이용하는 관객의 수는 영화 산업 매출에 직결되는 중요한 요소이다. 본 논문에서 특정일의 관객 수를 예측하기 위하여 다중선형회귀모형과 Bass 모형을 결합한 Hybrid 모형을 고려한다. 두 모형을 결합함으로써 회귀분석의 예측값을 Bass 모형의 예측값으로 보정하였다. 분석에는 개봉일이 모두 다른 세 영화를 이용하였다. All subset regression 방법을 이용해 모든 가능한 조합을 생성하고 5중 교차검증(5-fold cross validation)을 통해 5번 모형을 추정한다. 이 때 제곱근평균오차가 가장 작은 모형으로 예측값을 구한 뒤 Bass 모형의 예측값과 결합해 최종 예측값을 구하게 된다. 과거데이터가 존재할수록 Bass 모형의 가중치는 증가하면서 예측값에 보정효과를 준다는 것을 확인할 수 있었다.

다중반응치 자료에 대한 순차적 BIPLOT활용에 대한 연구 (A Study of Applications of Sequential Biplots in Multiresponse Data)

  • 장대흥
    • 응용통계연구
    • /
    • 제11권2호
    • /
    • pp.451-459
    • /
    • 1998
  • 반응표면분석에서 다반응값의 최적화 문제는 단반응값 최적화문제보다 복잡하다. 이런 다반응값 문제에서 반응변수들이나 설명변수 상호간의 관계나 중요성 등을 평가하는 것은 중요하다. 이러한 평가를 위하여 biplot를 이용할 수 있는데, 1차 회귀모형이 적합치 않은 경 우, 2차 회귀모형을 위한 순차적 실험계획을 이용하여 2차 회귀 모형에 대응되는 biplot를 그려 선형 및 비선형효과를 알 수 없게 된다.

  • PDF

소비자 사이의 중고 태블릿PC 거래 가격의 통계적 예측 (Statistical Prediction of Used Tablet PC Transaction Price among Consumers)

  • 고영희;김소형;정유진
    • 산업융합연구
    • /
    • 제20권12호
    • /
    • pp.179-186
    • /
    • 2022
  • 본 연구에서는 태블릿PC 중고제품의 거래 시, 판매자와 구매자 모두에게 판매가격을 제시할 수 있는 예측모형을 개발하는 것을 목표로 한다. 모형 개발을 위하여 실제 태블릿PC 중고거래 데이터와 제품에 대한 상세 정보를 추가 수집한 데이터를 사용하였다. 데이터 분석을 통하여 여러 가지 예측모형을 개발하였으며, 이 중 태블릿PC 중고가격 예측 성능이 가장 뛰어난 모형을 최종 예측모형으로 선택하였다. 구체적으로 중고 태블릿의 판매가격을 종속변수로 하고, 통합된 데이터에서 판매가격과 연관성이 있는 변수들을 독립변수로 한 다중선형회귀모형, 교호작용을 포함한 다중선형회귀모형, 그리고 각 모형에서 단계적 변수 선택법을 통해 얻은 모형들을 고려하였다. 이들 모형 중 교차타당성을 통해 최종적으로 예측 성능이 가장 뛰어난 모형을 태블릿PC 중고가격을 예측하는 모형으로 선택하였다. 본 연구를 통하여 중고제품 판매가격을 예측하고 판매자와 구매자에게 적절한 중고 거래 가격을 제시해 볼 수 있을 것이다.

기계학습 기반의 토양함수 예측 기법 개발 (용담댐 시험유역을 중심으로) (Estimating soil moisture using machine learning approach: A Case Study to Yongdam watershed)

  • 응웬딘휘;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.167-167
    • /
    • 2018
  • 토양수분은 토양에 포함된 평균 수분량을 나타내며 수문 순환 관점에서 매우 중요한 수문변량 중 하나이다. 본 연구에서는 대표적인 기계학습 방법인 Support Vector Machine (SVM)을 이용한 토양 함수 예측 기법을 개발하고자 하며, 예측인자로서 원격 탐측 기반의 토양함수자료, 강수량, 온도 등을 활용하고자 한다. SVM은 Kernel 함수를 이용하여 복잡한 비선형 관계를 선형 가정을 통해서 해석하는 기계학습 방법으로서 전역모델(global model)로서 다양한 수문기상분야에 적용이 이루어지고 있다. SVM의 장점은 일정 부분의 오차를 허용함으로서 모형의 일반화 측면에서 기존 인공신경망(artificial neural network, ANN)에 비해 우수한 성능을 나타내며, 특히 예측모형으로서 적용성이 매우 크다. 본 연구에서는 과거 토양 함수 자료와 강수, 온도, 위성 관측 기반 정보 등을 이용하여 모형을 적합시키고 이를 미계측 유역으로 확장하는데 연구의 목적이 있으며, 본 연구를 통해 제안된 모형은 용담댐 시험유역을 대상으로 적용되며 기존 ANN 모형 및 다중회귀분석 결과와 비교를 통해 모형의 적합성을 평가하고자한다.

  • PDF

유역특성인자를 활용한 Sacramento 장기유출모형의 매개변수 지역화 기법 연구 (A Study on Regionalization of Parameters for Sacramento Continuous Rainfall-Runoff Model Using Watershed Characteristics)

  • 김태정;정가인;김기영;권현한
    • 한국수자원학회논문집
    • /
    • 제48권10호
    • /
    • pp.793-806
    • /
    • 2015
  • 미계측유역의 유출량 모의는 수문학 분야에서 필수적인 사항이다. 강우-유출 모형을 이용하여 신뢰성 있는 유출량을 모의하기 위한 핵심사항은 강우-유출 모형의 매개변수를 추정하는 것이다. 하지만 현재 우리나라는 불충분한 수문자료로 인해 매개변수 추정에 어려움이 존재한다. 본 연구의 목표는 불확실성 반영을 위한 Bayesian 통계기법 기반의 강우-유출 모형의 매개변수를 지역화 하는 것이다. 그 방법은 다음과 같다. 첫째, 본 연구는 세계적으로 널리 사용되고 있는 Sacramento 강우-유출 모형에 Bayesian Markov Chain Monte Carlo 기법을 연계한 Bayesian Sacramento 강우-유출 모형을 사용하여 계측유역을 대상으로 13개 매개변수를 최적화하고 각 매개변수의 사후분포를 도출하였다. 둘째, 매개변수와 유역특성인자 사이에 회귀특성을 얻기 위해 다중선형회귀분석을 적용하여 유역특성을 고려한 지역화 매개변수를 결정하였다. 다중회귀분석을 통하여 산정된 지역화 매개변수를 계측유역에 전이하여 유출량을 모의 후 통계적 효율기준인 N-S계수, 일치계수 및 상관계수를 사용하여 지역화 매개변수 검증을 수행하였다.

내재된 인자회귀모형의 베이지안 분석법 (Bayesian analysis of latent factor regression model)

  • 경민정
    • 응용통계연구
    • /
    • 제33권4호
    • /
    • pp.365-377
    • /
    • 2020
  • 선형모형에서 두개 이상의 설명변수들 사이에 존재하는 다중공선성 문제를 변수들 간에 내재되어 있는 공통의 구조인 인자를 구성하고, 인자들을 회귀변수로 사용하여 해결하는 인자회귀모형에 대하여 논의한다. 무한개로 가정 가능한 내재된 인자 중 유의미한 인자적재행렬을 구성하기 위하여 벌점모수의 값이 큰 LASSO 사전분포를 적용하는 베이지안 추정법을 사용한다. 결정된 인자적재행렬과 다른 모수들의 추정값을 각 설명변수의 선형모수로 역변환 하여, 새로운 관측값에 대한 예측 모형으로도 사용한다. 제안한 방법을 제품 서비스 관리 자료에 적용하여 정해진 인자의 개수에 대한 인자가 일반적인 공통인자회귀모형과 동일한 결과를 나타냄을 확인하였고, 일반적인 공통인자회귀모형과 비교를 위해 계산한 평균 제곱 오차값이 더 작다는 것을 알 수 있었다.

시뮬레이션과 다중 회귀모형을 이용한 동시조달수리부속 최적화 (Optimization for Concurrent Spare Part with Simulation and Multiple Regression)

  • 김경록;용화영;권기상
    • 한국시뮬레이션학회논문지
    • /
    • 제21권3호
    • /
    • pp.79-88
    • /
    • 2012
  • 최근 방위 산업에는 장비가 군에서 요구한 임무를 완수하기 위해 장비 설계, 운용, 그리고 정비 측면에서 많은 연구가 이루어지고 있다. 그 중 동시조달수리부속은 장비가 군에 납품될 때 함께 들어가는 수리부속으로써, 이것을 분석하는 것은 장비의 운용가용도를 높이는데 가장 중요한 부분 중 하나이다. 그러나 이렇게 중요한 동시조달수리부속이지만 현실적 개발 환경을 고려한 공학적 분석 방법 발전 보다는 정책적인 방법으로 해결해 나가고 있는 실정이다. 그래서 본 연구에서는 동시조달수리부속 최적화를 위해 시뮬레이션과 다중 회귀모형 기법을 활용한 공학적 분석을 연구하였다. 먼저, 시뮬레이션 기법을 이용하여 가상으로 운용해보면서 정의된 보급 및 정비체계를 분석하고 이를 통해 품목별 동시조달수리부속의 수량을 변화에 따른 운용가용도의 변화 추이를 결과 자료로 산출하였다. 이렇게 얻은 입출력 자료를 통해 수리적 다중 회귀모형을 도출 후 선형계획법을 사용하여 동시조달수리부속 최적화를 하였다. 이때 최적화는 단가 제약을 두었다. 이 방법의 가장 큰 장점은 최적화 선정시 기준이 되는 제약조건의 변화에 빠르게 대응할 수 있다. 장비의 개발 단계에서는 품목별 단가는 지속적으로 바뀌기 마련이다. 이런 환경에서 제약조건이 바뀔 때 마다 시뮬레이션 분석을 재 수행하면 분석 속도가 늦어질 수밖에 없다. 그러므로 본 방법은 실제 개발 환경에 적합한 것이라 할 수 있다. 향후 이런 기본 개념을 바탕으로 시뮬레이션 모델링을 정밀화하고, 회귀모형의 정확성을 높여 연구의 완성도를 높일 것이다.

기본적인 연관평가기준 전부를 고려한 비선형 회귀모형에 의한 연관성 규칙 수의 결정 (Non-linear regression model considering all association thresholds for decision of association rule numbers)

  • 박희창
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권2호
    • /
    • pp.267-275
    • /
    • 2013
  • 데이터 마이닝 기법들 중에서도 연관성 규칙은 가장 최근에 개발된 기법으로 대용량 데이터베이스에서 각 항목들 간의 관련성을 찾아내며, 두 항목간의 관계를 명확히 수치화함으로써 두 개 이상의 항목간의 관련성을 표시하여 주기 때문에 현장에서 직접 적용이 가능하다. 일반적으로 연관성 규칙 생성 여부를 판단할 때, 각 항목간의 연관성을 반영하는 기준인 지지도, 신뢰도, 향상도 등의 흥미도 측도를 활용하게 된다. 실제적으로 연관성 규칙의 수를 결정하기 위해서는 이들 흥미도 측도들의 평가기준을 정하기 위해 반복적으로 조정 과정을 거쳐야 한다. 본 논문에서는 이러한 문제를 해결하기 위해 연관성 평가기준 모두를 일반적으로 많이 활용되고 있는 비선형 회귀모형에 적용하여 연관성 규칙의 수를 추정하는 방안을 강구하였다. 또한 분산팽창계수를 이용하여 다중공선성 문제를 진단하는 동시에 분산분석 결과와 수정 결정계수를 이용하여 각 모형의 기여도를 비교하여 가장 바람직한 회귀 모형을 구하였다.