• Title/Summary/Keyword: 다중상태 능동소나 시스템

Search Result 2, Processing Time 0.018 seconds

Mutual interference suppression of the sinusoidal frequency modulated pulse using SHAPE algorithm (SHAPE 알고리즘을 이용한 사인파 주파수 변조 펄스의 상호간섭 억제)

  • Kim, Guenhwan;Lee, Donghwa
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.27 no.5
    • /
    • pp.49-59
    • /
    • 2022
  • The SHAPE algorithm has the advantage of being able to shape the pulse spectrum as desired and design it not to distort other characteristics, so it was used in the active sonar pulse design. In this paper, we propose a pulse design using the SHAPE algorithm for a multi-static sonar system to reduce the cross-correlation between frequency-adjacent pulses and prevent the performance degradation of the pulses themselves. The boundary function of the SHAPE algorithm is set to be limited to the pulse bandwidth. As a result of applying the proposed design method to the sinusoidal frequency modulated pulse, the peak cross-correlation level (PCCL), which means the degree of cross-correlation, was reduced by 44.23 dB. Although the PCCL decreased by several tens of dB, no significant change in the ambiguity function was observed, and the integrated sidelobe level (ISL), which means the average value of the side lobe, increased by 11.64 dB.

Investigation of Target Echoes in Multi-static SONAR system - Part II : Numerical Modeling with Experimental Verification (다중상태 소나시스템을 적용한 표적반향음 연구 - Part II : 수치모델링과 실험적 검증)

  • Ji, Yoon Hee;Bae, Ho Seuk;Byun, Gi-Hoon;Kim, Jea Soo;Kim, Woo-Shik;Park, Sang-Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.440-451
    • /
    • 2014
  • A multi-static SONAR system consists of the transmitters and receivers separately in space. The active target echoes are received along the transmitter-target-receiver path and depend on the shape and aspect angle of the submerged objects at each receiver. Thus, the target echo algorithm used with a mono-static system, in which the transmitter and receiver are located at the same position, has limits in simulating the target echoes for a multi-static SONAR system. In this paper, a target echo modeling procedure for a 3D submerged object in space is described based on the Kirchhoff approximation, and the SONAR system is extended to a multi-static SONAR system. The scattered field from external structures is calculated on the visible surfaces, which is determined based on the locations of the transmitter and receiver. A series of experiments in an acoustic water tank was conducted to measure the target echoes from scaled targets with a single transmitter and 16 receivers. Finally, the numerical results were compared with experimental results and shown to be useful for simulating the target echoes/target strength in a multi-static SONAR system.