• Title/Summary/Keyword: 다중법

Search Result 1,720, Processing Time 0.023 seconds

Nonparametric multiple comparison method using aligned method and joint placement in randomized block design with replications (반복이 있는 랜덤화 블록 모형에서 정렬방법과 결합위치를 이용한 비모수 다중비교법)

  • Hwang, Juwon;Kim, Dongjae
    • The Korean Journal of Applied Statistics
    • /
    • v.31 no.5
    • /
    • pp.599-610
    • /
    • 2018
  • The method of Mack and Skillings (Technometrics, 23, 171-177, 1981) is a nonparametric multiple comparison method in a randomized block design with replications. This method is likely to result in loss of information because each block is ranked using the average of observations instead of repeated observations. In this paper, we proposed a new nonparametric multiple comparison method in the randomized block model with replications using an alignment method proposed by Hodges and Lehmann (The Annals of Mathematical Statistics, 33, 482-497, 1962) that extend the joint placement method proposed by Chung and Kim (Communications for Statistical Applications and Methods, 14, 551-560, 2007). In addition, Monte Carlo simulation compared the family wise error rate and power with the parametric method and the nonparametric method.

The Improvement of the Correlation Method for Shack-Hartmann Wavefront Sensors using Multi-Resolution Method (다중 해상도 중심점 탐색법을 이용한 샥-하트만 센서용 상관관계법의 속도 개선)

  • Yoo, Jae-Eun;Youn, Sung-Kie
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Shack-Hartmann sensors are widely employed as a wavefront measuring device in various applications. Adaptive optics is one of the major applications. Since an adaptive optics system should be operated in real-time, high-speed wavefront sensing is essential. In high-speed operation, integration time of an image detector is very short. In this case, noises such as readout noise and photon noise greatly influence the accuracy of wavefront sensing. Therefore a fast and noise-insensitive centroid finding algorithm is required for the real-time wavefront sensing. In this paper, the multi-resolution correlation method is proposed. By employing multi-resolution images, this method greatly reduces the computation time when compared to the fast Fourier transform (FFT) correlation method. The verification is performed through the computational simulation. In this paper, the center of mass method, correlation method and multi-resolution correlation method are employed to compare the measurement accuracy of the centroid finding algorithms. The accuracy of a Shack-Hartmann wavefront sensor using the proposed algorithm is proved to be comparable to that of the conventional correlation method.

Comparison of Multi-Static Sonar Target Positioning Performance (다중상태 소나망 위치 추정 성능 비교)

  • Park, Chee-Hyun;Ko, Han-Seok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.4
    • /
    • pp.166-172
    • /
    • 2007
  • In this paper, we address the target positioning performance of Multi-Static sonar with respect to target positioning method and measurement error. Based on the analysis on two candidate solution approaches, namely, Least Square (LS) using range and angular information simultaneously and Maximum Likelihood (ML) using only range information as the existing information fusion methods for possible application to Multi-Static sonar, we propose to employ ML using range and angular information. Assuming that each sensor can receive range and angular information, we conduct representative comparison experiments over the existing and proposed methods under various measurement noise scenarios. We also investigate the target positioning performance according to number of sensors, distance between transmitter and receiver. According to the experimental results, RMSE of the proposed ML with distance and direction information is found to be more superior to ML using distance alone and to LS in case distance between transmitter and receiver is longer and number of receiver is smaller.

Computerized Multiple 15-hue tests for Quantifying Color Vision Acuity (색각 능력의 정량적 평가를 위한 전산화된 다중 15-색상 배열 검사법)

  • Ko S.T.;Hong S.C.;Choi M.J.
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.3 s.61
    • /
    • pp.321-331
    • /
    • 2000
  • Multiple 15-hue tests were designed and implemented on a PC in the study so as to quickly and quantitatively evaluate color vision acuity. Difficulty of the test was control)ed by the value of CDBACC (color difference between adjacent color chips) calculated using a CIELAB formula. The multiple 15-hue tests consist of eight of the hue tests (test 3-10) and three of the basic color (red, green, blue) tests (test 11-13). The 15 colors used for the hue tests were specified by the 15 color coordinates that were located at a constant distance (d = 2. 3. 5. 7, 10, 20, 30. 40) from white reference in the CIE chromaticity coordinate system and were separated by a constant color difference (CDBACC = 0.75, 1.1, 1.8. 2.5. 3.5. 7.5. 11, 14) from the adjacent chips. The color coordinates for the 15 chips for the basic color tests were the same as those of the 15 points spaced equally by a constant color difference (6.87 for the green color test. 7.27 for the red color test, 7.86 for the blue color test) from the white reference along the axis of red, green and blue. Thirty normal subjects who were not color blind were taken to undergo the multiple 15-hue tests. It was observed that most of the subjects correctly arranged color chips for the tests with CDBACC greater than 5, whereas no one correctly answered for those with CDBACC less than 2. Rapid changes in the number of the subjects correctly arranged took place when CDBACC of the tests was between 2 and 4.5. In the basic color tests, unlike the hue tests having similar values of CDBACC, it was seen that the subjects arranged color chips even less correctly. It was found that JNCD (just noticeable color difference) - a measure of color vision acuity was about 3 in average for the subjects. The JNCD was chosen as the value of the CDBACC of the test for which about $50\%$ of the subjects failed to successfully arrange color chips. ERCCA (error rate of color chips arrangement) for the test with CDBACC the same as the JNCD was shown to be about $20\%$. It is expected that the multi 15-hue tests implemented on a PC in the study will be an economical tool to quickly and quantitatively evaluate color vision acuity and, accordingly, the tests can be used for early diagnosis to massive potential patients suffering from diseases (ex. diabetes, glaucoma) which may induce changes in color vision acuity.

  • PDF

Multi-classifier Decision-level Fusion for Face Recognition (다중 분류기의 판정단계 융합에 의한 얼굴인식)

  • Yeom, Seok-Won
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.77-84
    • /
    • 2012
  • Face classification has wide applications in intelligent video surveillance, content retrieval, robot vision, and human-machine interface. Pose and expression changes, and arbitrary illumination are typical problems for face recognition. When the face is captured at a distance, the image quality is often degraded by blurring and noise corruption. This paper investigates the efficacy of multi-classifier decision level fusion for face classification based on the photon-counting linear discriminant analysis with two different cost functions: Euclidean distance and negative normalized correlation. Decision level fusion comprises three stages: cost normalization, cost validation, and fusion rules. First, the costs are normalized into the uniform range and then, candidate costs are selected during validation. Three fusion rules are employed: minimum, average, and majority-voting rules. In the experiments, unfocusing and motion blurs are rendered to simulate the effects of the long distance environments. It will be shown that the decision-level fusion scheme provides better results than the single classifier.

Sound transmission of multi-layered micro-perforated plates in a cylindrical impedance tube (원통형 임피던스 튜브 내 다중 미세천공 판의 음향투과)

  • Kim, Hyun-Sil;Ma, Pyung-Sik;Kim, Bong-Ki;Lee, Seong-Hyun;Seo, Yun-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.4
    • /
    • pp.270-278
    • /
    • 2020
  • In this paper, sound transmission of Micro-Perforated Plates (MPPs) installed in an impedance tube with a circular cross-section is described using an analytic method. Vibration of the plates is expressed in terms of an infinite series of modal functions, where modal function in the radial direction is given by the Bessel function. Under the plane wave assumption, a low frequency approximation is derived, and a formula for the sound transmission coefficient of multi-layered MPPs is presented using the transfer matrix method. The Sound Transmission Losses (STLs) of single and double MPPs are computed using the proposed method and compared with those done by the Finite Element Method (FEM), which shows an excellent agreement. As the perforation increases, the STL is degraded, since the STL becomes dominated by the perforation ratio rather than by vibration of the plate. The STL shows dips at natural frequencies as well as at the mass-spring-mass resonance frequency. The proposed model for the STL prediction in this study can be applied to an arbitrary number of MPPs, where each MPP may or may not have a perforation.

Development of Ultra-Rapid Multiplex PCR Detection against 6 Major Pathogens in Honeybee (꿀벌 6종 주요 병원체에 대한 초고속 다중 PCR 검출법의 개발)

  • Lim, Su-Jin;Kim, Jung-Min;Lee, Chil-Woo;Yoon, Byoung-Su
    • Journal of Apiculture
    • /
    • v.32 no.1
    • /
    • pp.27-39
    • /
    • 2017
  • PCR-chip-based ultra-rapid multiplex PCRs for detection of six major infectious pathogens in honeybee were developed. The 6 kinds of major infectious pathogens in honeybee included Paenibacillus larvae causing American Foulbrood, Melissococcus plutonius causing European Foulbrood as bacteria, Ascosphaera apis (Chalkbrood), Aspergillus flavus (Stonebrood), Nosema apis and Nosema ceranae (Nosemosis) as fungi. The developed PCR-chip-based ultra-rapid multiplex PCR showed successful amplification for all six major pathogens in the presence of more than $10^3$ molecules. The time for confirming amplification (Threshold cycles; Ct-time) was about 7 minutes for two species, and about 9 minutes for four species. Total 40 cycles of PCR took 11 minutes 42 seconds and time for melting point analysis was 1 minute 15 seconds. Total time for whole PCR detection was estimated 12 minutes 57 seconds (40 cycles of PCR and melting point analysis). PCR-chip based ultra-rapid multiplex PCR using standard DNA substrates showed close to 100% accuracy and no false-amplification was found with honeybee genomic DNA. Ultra-rapid multiplex PCR is expected to be a fast and efficient pathogen detection method not only in the laboratory but also in the apiary field.

Seismic reflection imaging of a Warm Core Ring south of Hokkaido (훗카이도 남부 Warm Core Ring의 탄성파 반사법 영상화)

  • Yamashita, Mikiya;Yokota, Kanako;Fukao, Yoshio;Kodaira, Shuichi;Miura, Seiichi;Katsumata, Katsuro
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.18-24
    • /
    • 2011
  • A multi-channel seismic reflection (MCS) survey was conducted in 2009 to explore the deep crustal structure of the Pacific Plate south of Hokkaido. The survey line happened to traverse a 250-km-wide Warm Core Ring (WCR), a current eddy that had been generated by the Kuroshio Extension. We attempted to use these MCS data to delineate the WCR fine structure. The survey line consists of two profiles: one with a shot interval of 200m and the other with a shot interval of 50 m. Records from the denser shot point line show much higher background noise than the records from the sparser shot point line. We identified the origin of this noise as acoustic reverberations between the sea surface, seafloor and subsurface discontinuities, from previous shots. Results showed that a prestack migration technique could enhance the signal buried in this background noise efficiently, if the sound speed information acquired from concurrent temperature measurements is available. The WCR is acoustically an assemblage of concave reflectors dipping inward, with steeper slopes (${\sim}2^{\circ}$) on th ocean side and gentler slopes (${\sim}1^{\circ}$) on the coastal side. Within the WCR, we recognised a 30-km-wide lens-shaped structure with reflectors on the perimeter.

Estimation of the Flash Point for n-Pentanol + n-Propanol and n-Pentanol + n-Heptanol Systems by Multiple Regression Analysis (다중회귀분석법을 이용한 n-Pentanol + n-Propanol계 및 n-Pentanol + n-Heptanol계의 인화점 예측)

  • Ha, Dong-Myeong;Lee, Sungjin
    • Fire Science and Engineering
    • /
    • v.30 no.6
    • /
    • pp.31-36
    • /
    • 2016
  • The flash point is one of the most important properties for characterizing the fire and explosion hazard of liquid solutions. In this study, the flash points of two flammable binary mixtures, n-pentanol + n-propanol and n-pentanol + n-heptanol systems were measured using a Seta flash closed cup tester. The flash point was estimated using the methods based on Raoult's law and multiple regression analysis. The measured flash points were also compared with the predicted flash points. The absolute average errors (AAE) of the results calculated by Raout's law were $1.3^{\circ}C$ and $1.3^{\circ}C$ for the n-pentanol + n-propanol and n-pentanol + n-heptanol mixtures, respectively. The absolute average errors of the results calculated by multiple regression analysis were $0.4^{\circ}C$ and $0.3^{\circ}C$ for the n-pentanol + n-propanol and n-pentanol + n-heptanol mixtures, respectively. According to the AAE, the calculated values based on multiple regression analysis were better than those based on Raoult's law.

A Study on the Detection Characteristics in Glucose and Fabrication of Bi-Enzyme Electrode using Electrochemical Method (전기화학적 방법을 이용한 다중 효소 전극 제작 및 글루코스 검출 특성에 관한 연구)

  • Han, Kyoung Ho;Shin, In Seong;Yoon, Do-Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.3
    • /
    • pp.66-72
    • /
    • 2020
  • In this study, the development of biosensors capable of bi-enzyme reactions by including Horseradish peroxidase and glucose oxidase was carried out for detection of glucose. The sensors were manufactured using electro deposition method to reduce production time, and screen printed electrodes (SPE) were used to produce economical sensors. To check the bienzyme effect, the sensor was compared and analyzed with single enzyme biosensor. The characteristics of the sensor were evaluated using scanning electron microscopy(SEM), cyclic voltammetry(CV), electrochemical impedance spectroscopy(EIS), chronoamperometry(CA), and flow injection analysis(FIA). Analysis results from SEM, CV and EIS confirmed that the enzymes are well fixed to the electrode surface. In addition, it was confirmed that bi-enzyme biosensors manufactured from the CA method improved signal performance by 200% compared to single enzyme biosensors. From this results, we were able to explain that HRP and GOD react catalyzed to each other. And the results of FIA showed that the intensity of each current signal was constant when the same concentration of glucose was injected four times. In addition, by analyzing the intensity of current signals for glucose concentrations, the biosensors manufactured in this study showed excellent trends in signal sensitivity, reproducibility and stability.