• Title/Summary/Keyword: 다중로지스틱모형

Search Result 57, Processing Time 0.019 seconds

River Water Temperature Variations at Upstream of Daecheong Lake During Rainfall Events and Development of Prediction Models (대청호 상류 하천에서 강우시 하천 수온 변동 특성 및 예측 모형 개발)

  • Chung, Se-Woong;Oh, Jung-Kuk
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.1 s.162
    • /
    • pp.79-88
    • /
    • 2006
  • An accurate prediction of inflow water temperature is essentially required for real-time simulation and analysis of rainfall-induced turbidity 烈os in a reservoir. In this study, water temperature data were collected at every hour during the flood season of 2004 at the upstream of Daecheong Reservoir to justify its characteristics during rainfall event and model development. A significant drop of river water temperature by 5 to $10^{\circ}C$ was observed during rainfall events, and resulted in the development of density flow regimes in the reservoir by elevating the inflow density by 1.2 to 2.6 kg/$m^3$ Two types of statistical river water temperature models, a logistic model(DLG) and regression models(DMR-1, DMR-2, DMR-3) were developed using the field data. All models are shown to reasonably replicate the effect of rainfall events on the water temperature drop, but the regression models that include average daily air temperature, dew point temperature, and river flow as independent variables showed better predictive performance than DLG model that uses a logistic function to determine the air to water relation.

Simultaneous Optimization Model of Case-Based Reasoning for Effective Customer Relationship Management (효과적인 고객관계관리를 위한 사례기반추론 동시 최적화 모형)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae;Han, In-Goo
    • Journal of Intelligence and Information Systems
    • /
    • v.11 no.2
    • /
    • pp.175-195
    • /
    • 2005
  • 사례기반추론(case-based reasoning)은 사례간 유사도를 평가하여 유사한 이웃사례를 찾아내고, 이웃사례의 결과를 이용하여 새로운 사례에 대한 예측결과를 생성하는 전통적인 인공지능기법 중 하나다. 이러한 사례기반추론이 최근 적용이 쉽고 간단하다는 장점과 모형의 갱신이 실시간으로 이루어진다는 점 등으로 인해, 온라인 환경에서의 고객관계관리를 위한 도구로 학계와 실무에서 주목을 받고 있다 하지만, 전통적인 사례기반추론의 경우, 타 인공지능기법에 비해 정확도가 상대적으로 크게 떨어진다는 점이 종종 문제점으로 제기되어 왔다. 이에, 본 연구에서는 사례기반추론의 성과를 획기적으로 개선하기 위한 방법으로 유전자 알고리즘을 활용한 사례기반추론의 동시 최적화 모형을 제안하고자 한다. 본 연구가 제안하는 모형에서는 기존 연구에서 사례기반추론의 성과에 중대한 영향을 미치는 요소들로 제시된 바 있는 사례 특징변수의 상대적 가중치 선정(feature weighting)과 참조사례 선정(instance selection)을 유전자 알고리즘을 이용해 최적화함으로서, 사례간 유사도를 보다 정밀하게 도출하는 동시에 추론의 결과를 왜곡할 수 있는 오류사례의 영향을 최소화하고자 하였다. 제안모형의 유용성을 검증하기 위해, 본 연구에서는 국내 한 전문 인터넷 쇼핑몰의 구매예측모형 구축사례에 제안모형을 적용하여 그 성과를 살펴보았다. 그 결과, 제안모형이 지금까지 기존 연구에서 제안된 다른 사례기반추론 개선모형들은 물론, 로지스틱 회귀분석(LOGIT), 다중판별분석(MDA), 인공신경망(ANN), SVM 등 다른 인공지능 기법들에 비해서도 상대적으로 우수한 성과를 도출할 수 있음을 확인할 수 있었다.

  • PDF

An Analysis for Influencing Factors in Purchasing Electric Vehicle using a Binomial Logistic Regression Model (Focused on Suwon City) (이항로지스틱 회귀모형을 이용한 전기차 구매 영향요인 분석 (수원시를 중심으로))

  • Kim, Sukhee;Jeong, Gahyung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.887-894
    • /
    • 2018
  • An electric vehicle is emerging as an alternative to the response of global climate change and sustainability. However, an Electric vehicle has not been popular due to the constraints such as its price or technical limitations. In order to analyze the effect of purchasing electric vehicles, this study conducted a binary logistic regression model that demonstrates the relation between purchasing and influencing variables. Variables which have high correlation were excluded from the model through the correlation analysis to prevent multicollinearity. Socio-economic variables such as the number of owned vehicles, sex, ages are not significant. On the other hand, Variables related to prices, charging and policy are found to have a significant to effect on the purchase of electric vehicles. In accordance with the model estimated result, it seems to be necessary to improve the charging incentives, or to provide electric car information and to expand opportunities for experience electric vehicles. The result is also expected to be helpful for spreading electric vehicles and formulating policies.

Comparison of Daily Rainfall Interpolation Techniques and Development of Two Step Technique for Rainfall-Runoff Modeling (강우-유출 모형 적용을 위한 강우 내삽법 비교 및 2단계 일강우 내삽법의 개발)

  • Hwang, Yeon-Sang;Jung, Young-Hun;Lim, Kwang-Suop;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.12
    • /
    • pp.1083-1091
    • /
    • 2010
  • Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. However, widely used estimation schemes fail to describe the realistic variability of daily precipitation field. We compare and contrast the performance of statistical methods for the spatial estimation of precipitation in two hydrologically different basins, and propose a two-step process for effective daily precipitation estimation. The methods assessed are: (1) Inverse Distance Weighted Average (IDW); (2) Multiple Linear Regression (MLR); (3) Climatological MLR; and (4) Locally Weighted Polynomial Regression (LWP). In the suggested simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before applying IDW scheme (one of the local scheme) to estimate the amount of precipitation separately on wet days. As the results, the suggested method shows the better performance of daily rainfall interpolation which has spatial differences compared with conventional methods. And this technique can be used for streamflow forecasting and downscaling of atmospheric circulation model effectively.

Malware classification using statistical techniques (통계적 기법을 이용한 악성 소프트웨어 분류)

  • Won, Sungmin;Kim, Hyunjoo;Song, Jongwoo
    • The Korean Journal of Applied Statistics
    • /
    • v.30 no.6
    • /
    • pp.851-865
    • /
    • 2017
  • Ransomware such as WannaCry is a global issue and methods to defend against malware attacks are important. We have to be able to classify the malware types efficiently in order to minimize the damage from malwares. This study makes models to classify malware properly with various statistical techniques. Several classification techniques such as logistic regression, random forest, gradient boosting, and support vector machine are used to construct models. This study also helps us understand key variables to classify the type of malicious software.

Preference of Rail Station Lifts(Stairs & Escalation) & Estimating the User Benefit of Escalation (도시철도 에스컬레이터에 대한 이용선호 및 지불의사금액 추정)

  • Ko, Kwng-hwa;Choi, Jaisung;Kim, Sangyoup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.4
    • /
    • pp.76-85
    • /
    • 2018
  • This study aims to analyze citizen's preference of rail station lifts(stairs & Escalation) and estimate the user benefit of Escalation, Also it includes how high is the height of the entrance ramp when citizens want to set up an escalator. 89 percent of subway users prefer escalators and said escalators are needed for stairs higher than the double-deck stairs. Especially It is higher for the age older than 30 and woman. Therefore, personnel characteristics and facility characteristics should be considered in relation to escalator installation. Based on the multiple logistic model, WTP(Willing to pay) was estimated at 34.37 won in a survey conducted to estimate practical user benefit(physical side) of escalator.

Multiple Trajectories of Depressive Symptoms Among Older Adults (노년기 우울의 다중변화궤적에 관한 연구)

  • Kang, Eun-Na;Choi, Jae-sung
    • 한국노년학
    • /
    • v.34 no.2
    • /
    • pp.387-407
    • /
    • 2014
  • This study aims to identify the multiple trajectories of depressive symptoms and the characteristics of each trajectory group among the elderly. This study uses five waves of longitudinal data from the Korean Welfare Panel Study (KWPS, 2006-2010). Subjects were older adults aged 60 and over who had completed at least three waves between 2006 and 2010. A total of 4,181 respondents were analyzed. The latent growth mixture model and the multiple logistic regression model were mainly used for data analysis. The major findings were as follows: After controlling for the variables of gender, age, education, marital status, self-assessed health, and poverty, this study identified four different trajectory classes: stable low depressive symptoms (71.8%), high but decreased depressive symptoms (10.6%), moderate but increased depressive symptoms (7.9%), and an increased, then a decreased pattern of depressive symptoms (9.7%). The characteristics of theses trajectories as compared to previous studies were a lower percentage of 'stable low depressive symptoms', no 'persistently high depressive symptoms', and higher level of depressive symptoms. Also, the elderly in the stable low trajectory group had better health status, higher self-esteem and a good relationship with family members, having longer working periods, and more living in non-poverty. In addition, chronic health problems, loss of spouse, and household income differentiated the increased and then decreased pattern from the low stable pattern. Also, age and public pension differentiated the moderated but increased pattern from the low stable pattern. Based on the findings of this study, the researchers suggested political and practical implications for reducing depressive symptoms in later life.

A Comparative Analysis on the Characteristics of ODI by Korean and Japanese Firms into Asian Continent (한국·일본의 대 아시아지역 직접투자 특성의 비교분석)

  • Kim, Seong Ki;Chae, Doo Byung;Kang, Han Gyoun
    • International Area Studies Review
    • /
    • v.14 no.3
    • /
    • pp.267-289
    • /
    • 2010
  • The purpose of this paper is to compare the different characteristics of Korean and Japanese Overseas Direct Investment(ODI) in Asia. An empirical test consists of two parts, the determinants of ODI and the micro characteristics of subsidiaries in Asia between Korea and Japan. Multiple regression and logistic regression model are used in empirical tests as methodology. The coefficient of GDP is significant and positive sign to sole venture in both countries. The coefficient of CPA in Korea is significant and positive sign to joint venture but insignificant in Japan. The coefficient of WAGE in Korea is significant and positive sign to joint venture but is significant and negative sign to joint venture in Japan. The coefficient of LBIT is significant and positive sign to joint venture in Japan. The coefficient of HOME is significant and positive sign to sole venture in both countries.

Statistical analysis of mobile internet news users' attributes affecting on opinion formation for social major issues (모바일 인터넷 뉴스 이용자의 속성이 정치, 경제, 사회적 주요 현안에 대한 의견 형성에 미치는 영향에 대한 통계적 분석)

  • Kim, Jaehee
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.1
    • /
    • pp.57-74
    • /
    • 2021
  • The proliferation of smart devices (such as smart phones and tablet PCs) has led to a marked increase in the use of mobile-based internet. As a result, the influence of the mobile internet has become important to make opinions on social issues. This study explores the effects of mobile internet news users' characteristics on formation of opinions about major political, economic and social issues. We used the data from the media audience awareness survey by the Korean Press Foundation in 2016 and 2017 in this analysis. The characteristics of the news users are gender, age, education, income, news usage days, news usage hours, media application usage days, news gathering application usage days, portal usage days, and media official website usage days. These characteristics are known as possible explanatory variables for the mobile internet news users. Multiple logistic regressions were done with interpretation to know which covariates affect on formation of major opinion.

The probabilistic estimation of inundation region using a multiple logistic regression analysis (다중 Logistic 회귀분석을 통한 침수지역의 확률적 도출)

  • Jung, Minkyu;Kim, Jin-Guk;Uranchimeg, Sumiya;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.2
    • /
    • pp.121-129
    • /
    • 2020
  • The increase of impervious surface and development along the river due to urbanization not only causes an increase in the number of associated flood risk factors but also exacerbates flood damage, leading to difficulties in flood management. Flood control measures should be prioritized based on various geographical information in urban areas. In this study, a probabilistic flood hazard assessment was applied to flood-prone areas near an urban river. Flood hazard maps were alternatively considered and used to describe the expected inundation areas for a given set of predictors such as elevation, slope, runoff curve number, and distance to river. This study proposes a Bayesian logistic regression-based flood risk model that aims to provide a probabilistic risk metric such as population-at-risk (PAR). Finally, the logistic regression model demonstrates the probabilistic flood hazard maps for the entire area.