• Title/Summary/Keyword: 다자유도

Search Result 121, Processing Time 0.033 seconds

Teleoperation of a Robot Manipulator using Bioimpedance (생체 임피던스를 이용한 로봇의 원격제어)

  • 김근영;김경환;김덕원;김수찬
    • Proceedings of the IEEK Conference
    • /
    • 2001.06e
    • /
    • pp.13-16
    • /
    • 2001
  • 본 논문에서는 인간의 생체 임피던스를 이용하여 인간의 팔 운동을 추정하고자 한다. 생체 신호를 이용하여 인간의 운동을 추정하기 위해서는 먼저 생체 신호와 인간의 운동 사이의 정량적인 관계를 구해야 하며 특히, 다자유도 운동의 추정에는 생체 신호간의 간섭등을 고려하여야 한다. 본 논문에서는 먼저 일자유도 운동실험을 통해 생체 임피던스와 인간 팔 관절의 회전각 사이의 선형성을 고찰한다. 그리고, 다자유도 측정시에 발생하는 근육간의 결합성과 방향성의 문제에 대해 주파수 분할 측정법을 도입하여 팔의 다자유도 운동을 추정하였다. 마지막으로, 실제의 로봇을 제어하는데 응용하였다.

  • PDF

Evaluation of Ductility Factors for MDOF Systems in Special Steel Moment Resisting Frames (철골 연성 모멘트 골조에 대한 다자유도 시스템의 연성계수 평가)

  • Kang, Cheol-Kyu;Han, Young-Cheol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.6 s.40
    • /
    • pp.13-22
    • /
    • 2004
  • Ductiluty factor has played an important role in seismic design as it is key component of response modification factor(R). In this stuty, ductility factors() are calculated by multiplying ductility factor for SDOF systems() and MDOF modification factors(). Ductility factors() for SDOF systems are computed from nonlinear dynamic analysis undergoing different level of displacement ductiluty demands and period when subjected to a large number of recorded earthquake ground motions. The MDOF modification factors() are proposed to account for the MDOF systems, based on previous studies. A total of 108 prototype steel frames are designed to investigate the ductility factors considering the number of stories(4, 8 and 16-stories), framing system(Perimeter Frames, PF and Distributed Frames, DF), failure mechanism(Strong-Column Weak-Beam, SCWB and Weak-Column Strong-Beam, WCSB), soil profiles(SA, SC and SE in UBC 1997) and seismic zone factors(Z=0.075, 0.2 and 0.4 in UBC 1997). It is shown that the number of stories, failure mechanisms (SCWB, WCSB), and soil profiles have great influence on the ductility factors, however, the structural system(Perimeter frames, Distributed frames), and seismic zones have no influence on the ductility factors.

Modified Nonlinear Static Pushover Procedures of MDOF Bridgesfor Seismic Performance Evaluation (내진성능평가를 위한 다자유도 교량의 수정 비선형 등가정적해석법)

  • Cho, Chang-Geun;Kim, Young-Sang;Bae, Soo-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.175-184
    • /
    • 2006
  • Two methods of the nonlinear static pushover analysis have been presented for the performance-based seismic design and evaluation of MDOF continuous bridges. Guidelines for buildings presented in FEMA-273 applying the Displacement Coefficient Method (DCM) and in ATC applying the Capacity Spectrum Method(CSM) have been modified for MDOF bridges. Two methods are compared with the time- history analysis. The lateral load distribution pattern for seismic loads has been examined in the static pushover analysis. The force-based fiber frame finite element has been implemented in the modeling of reinforced concrete piers.

Performance Evaluation of Multi-Degree-of-Freedom Robotic Mixer using Discrete Element Mixing Simulations (이산요소법 교반 시뮬레이션을 이용한 다자유도 로봇 믹서 성능 평가)

  • Son, Kwon Joong
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.219-224
    • /
    • 2020
  • Industrial mixers to homogeneously blend particulate materials have been developed and widely used in various industries. However, most industrial mixers have at most two-degree-of-freedom for the operation, which limits the range of operation parameter selection for optimal blending. This paper proposes a multi-degree-of-freedom robotic mixer designed by converging a conventional drum blender and a robotic manipulator and evaluated its performance in a virtual operating environment. Discrete element simulations were conducted for mixing performance evaluation. The numerical results showed that the proposed mixer design exhibits a better mixing performance than conventional ones.

Equivalent SDF Systems Representing Steel Moment Resisting Frames (철골 모멘트 골조의 지진해석을 위한 등가 단자유도시스템)

  • Han, Sang-Whan;Moon, Ki-Hoon;Kim, Jin-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.21-28
    • /
    • 2008
  • To evaluate the seismic performance of multi-degree of freedom(MDF) systems, repeated nonlinear response history analyses are often conducted, which require extensive computational efforts. To reduce the amount of computation required, equivalent single degree of freedom(SDF) systems representing complex multi-degree of freedom(MDF) systems have been developed. For the equivalent SDF systems, bilinear models and trilinear models have been most commonly used. In these models, the P-$\Delta$ effect due to gravity loads during earthquakes can be accounted for by assigning negative stiffness after elastic range. This study evaluates the adequacy of equivalent SDF systems having these hysteretic models to predict the actual response of steel moment resisting frames(SMRF). For this purpose, this study conducts cyclic pushover analysis, nonlinear time history analysis and incremental dynamic analysis(IDA) for SAC-Los Angeles 9-story buildings using nonlinear MDF models(exact) and equivalent SDF models(approximate). In addition, this study considers the strength limited model.

Evaluation of Seismic Response of Multi-Degree of Freedom Bridge Structures According to The ESDOF Method (등가단자유도 방법에 따른 다자유도 교량의 지진응답평가)

  • Song, Jong-Keol;Nam, Wang-Hyun;Chung, Yeong-Hwa
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.23-30
    • /
    • 2005
  • The capacity spectrum method(CSM) can be used for the evaluation of inelastic maximum response of structures and has been recently used in the seismic design using the incorporation of pushover analysis and response spectrum method. To efficiently evaluate seismic performance of multi-degree-of freedom(MDOF) bridge structures, it is important that the equivalent response of MDOF bridge structures should be calculated. To calculate the equivalent response of MDOF system, equivalent responses are obtained by using Song method, Fajfar method and Calvi method. Also, those responses are applied to CSM method and seismic performance of bridge according to the ESDOF method are compared and evaluated straightforwardly.

  • PDF

Evaluation of Inertial Interaction of a Multi-degree-of-freedom Structure during a Large-scale 1-g Shaking Table Test (대형 진동대 실험을 이용한 다자유도 구조물의 관성 상호작용 평가)

  • Chae, Jonghoon;Yoon, Hyungchul;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.17-28
    • /
    • 2022
  • The effect of the soil-structure interaction (SSI) on has been recently evaluated in shaking table tests. However, most of these tests were conducted on single-degree-of-freedom (SDOF) superstructures and a single-pile. This study investigates the inertial interaction effect of a multi-degree-of-freedom (MDOF) superstructure system with a group piles on a large-scale shaking table test. Whereas the SDOF superstructure system shows a single-frequency amplification tendency, the MDOF superstructure system exhibited amplification tendencies of the acceleration phase and frequency responses for multiple frequencies. In addition, the amplification phenomenon between the footing and the column-type superstructure exceeded that between the footing and the wall-type superstructure, indicating a greater inertial interaction effect of the column-type superstructure. The relationship between shear force and inertial force, the relative vertical and horizontal displacements on the footing was figured out. Also, the ananlysis of dynamic p-y curve at each depth was conducted. In summary, the MDOF and SDOP superstructure systems exhibited different behaviors and the column-type superstructure exerted a higher interaction effect than the wall-type superstructure.

Study on the Response Modification Factor for a Lightweight Steel Panel-Modular Structure Designed as a Dual Frame System (이중골조시스템으로 설계된 복강판-모듈러 구조물의 반응수정계수에 관한 연구)

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • In this present study, a response modification factor for a lightweight steel panel-modular system which is not clarified in a current building code was proposed. As a component of the response modification factor, an over-strength factor and a ductility factor were drawn from the nonlinear static analysis curves of the systems modeled on the basis of the performance tests. The final response modification factor was then computed by modifying the previous response modification factor with a MDOF (Multi-Degree-Of-Freedom) base shear modification factor considering the MDOF dynamic behaviors. As a result of computation for the structures designed as a dual frame system, ranging from 2-story to 5-story, the value of 4 was estimated as a final response modification factor for a seismic design, considering the value of 5 as an upper limit of the number of stories.

Multi-Degree-of-Freedom Displacement Measurement of a Rigid Body Using a Diffraction Grating as a Cooperative Target (회절 격자 표식을 이용한 강체의 다자유도 변위 측정)

  • Kim, Jong-Ahn;Bae, Eui-Won;Kim, Kyung-Chan;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.415-419
    • /
    • 2000
  • Multi-degree-of-freedom (MDOF) displacement measurement Is needed In many application fields: precision machine control, precision assembly, vibration analysis, and so on. This paper presents a new MDOF displacement measurement method using a laser diode (LD), two position-sensitive detectors (PSDs), and a conventional diffraction grating. It utilizes typical features of a diffraction grating to obtain the information of MDOF displacement. MDOF displacement is calculated from the independent coordinate values of the diffracted ray spots on the PSDs. Forward and inverse kinematic problems were solved to compute the MDOF displacement of a rigid body. Experimental results show maximum absolute errors of less than ${\pm}10$ micrometers in translation and ${\pm}30$ arcsecs in rotation.

  • PDF