• Title/Summary/Keyword: 다상입자유동

Search Result 13, Processing Time 0.04 seconds

Application of the lattice Boltzmann method to multiphase flow and combustion analysis (다상 유동 및 연소 해석에서 Lattice Boltzmann 방법의 응용 가능성에 대한 고찰)

  • Huh, Kang-Yul
    • 한국연소학회:학술대회논문집
    • /
    • 2001.06a
    • /
    • pp.3-8
    • /
    • 2001
  • LBM은 분자 운동을 직접 모사하지 않고 통계 역학적 원리에 기초하여 주어진 격자 구조 아래서 입자들의 단순 이동, 충돌 과정의 반복에 의해 유동을 모사하는 방법이다. 이미 다양한 열유동 현상들에 대한 응용 결과가 발표되었으며 병렬화, 단순한 프로그래밍 등의 장점으로 인해 앞으로 연소, 다상 유동, micro/nano 스케일 유동 등의 해석에 많은 가능성을 지니고 있다. 아직 국내에서는 이에 대한 소개가 제대로 이루어지지 못해 관련 분야의 연구자들이 충분한 관심을 갖고 있지 않은 것으로 생각되어 본 논문에서 LBM 방법에 대한 개략적인 소개를 시도하였다.

  • PDF

Numerical Study on Rayleigh-Taylor Instability Using a Multiphase Moving Particle Simulation Method (다상유동형 입자법을 이용한 Rayleigh-Taylor 불안정성의 수치해석)

  • Kim, Kyung Sung;Koo, Bonguk;Kim, Moo-Hyun;Park, Jong-Chun;Choi, Han-Suk;Cho, Yong-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.20 no.1
    • /
    • pp.37-44
    • /
    • 2017
  • Complexity of multiphase flows due to existence of more than two interface including free-surface in one system, cannot be simulated easily. Since more than two fluids affect to flows and disturb interface, non-linearities such as instabilities can be appeared. Among several instabilities on multiphase flows, one of representative is Rayleigh-taylor instability. In order to examine in importance of density disparity, several cases with numerous Atwood number are set. Moreover, investigation of influence on initial disturbance were also considered. Moving particle simulation (MPS) method, which was employed in this paper, was not widely used for multiphase problem. In this study, by adding new particle interaction models such as self-buoyance correction, surface tension, and boundary condition at interface models, MPS were developed having more strength of physics and robust. By applying newly developed multiphase MPS, considered cases are performed and compared each other. Additionally, though existence of disagreement of magnitude of rising velocity between theoretical values from linear potential theory and that of numerical simulation, agreement of tendency can be proved of similarity of result. the discordance of magnitude can be explained due to non-linear effects on numerical simulation which was not considered in theoretical result.

Study of Kaolin Particle Migration and Clogging Using a Micromodel (마이크로 모델을 이용한 고령토 입자의 유동 특성 연구)

  • Ha, Minkyu;Jung, Jongwon
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.4
    • /
    • pp.37-42
    • /
    • 2019
  • Hydrate dissociation is required to produce methane, which generates both water and methane. Thus, multiphase fluid flow and desalination are expected during methane production, which causes the fine migration and clogging in pores. The goal of this study is to explore the effects of both multiphase fluid flow and desalination on the migration and clogging of kaolin particles as typical fines. The results are as follows : (1) the larger the pore size is, the more mounting the critical clogging concentration is, (2) kaolin particles are more easily clustering and clogging in deionized water than salty water, and (3) the critical clogging concentration of kaolin in multiphase fluid flow is lower than in singlephase fluid flow. Therefore, clustering and clogging of kaolin within pore occur easily due to desalination and multiphase fluid flow when methane is produced from hydrates, and the efficiency of methane production is expected to decrease due to the degradation of permeability coefficient.

DEVELOPMENT OF EULERIAN-GRANULAR MODEL FOR NUMERICAL SIMULATION MODEL OF PARTICULATE FLOW (Eulerian-Granular method를 사용한 고체 입자 유동 모델 개발)

  • Lee, T.G.;Shin, S.W.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.46-51
    • /
    • 2015
  • In this paper, we have developed numerical model for particulated flow through narrow slit using Eulerian-Granular method. Commercial software (FLUENT) was utilized as simulation tool and main focus was to identify the effect from various numerical options for modeling of solid particles as continuos phase in granular flow. Gidaspow model was chosen as basic model for solid viscosity and drag model. And lun-et-al model was used as solid pressure and radial distribution model, respectively. Several other model options in FLUENT were tested considering the cross related effect. Mass flow rate of the particulate through the slit was measured to compare. Due to the high volume density of the stacked particulates above the slit, effect from various numerical options were not significant. The numerical results from basic model were also compared with experimental results and showed very good agreement. The effects from the characteristics of particles such as diameter, angle of internal friction, and collision coefficient were also analyzed for future design of velocity resistance layer in solar thermal absorber. Angle of internal friction was found to be the dominat variable for the particle mass flow rate considerably. More defined 3D model along with energy equation for complete solar thermal absorber design is currently underway.

A Numerical Study on Mixing of Liquid Fuel and Solid Particles in a Fuel Tank (연료탱크내 액체연료와 고체입자의 혼합 수치해석 연구)

  • Kim, Myung-Ho;Ryu, Gyong-Won;Min, Seong-Ki;Hwang, Ki-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.745-749
    • /
    • 2011
  • Two-dimemsional liquid-solid multiphase fluid dynamics was used to analyze the suspension and mix of liquid fuel and solid particles in fuel tank installed mixing impeller. In this paper, the multiphase flow was modeled using Eulerian Grandular Multiphase model. Experimental measurements of the axial distribution of solids concentration in stirred tanks under 12vol% solid loading were used for comparison with the CFD simulation. Four cases for the impeller location and flow pumping direction also were reviewed under 10.5% solids loading and 700rpm in fuel mix tank. The result of quality of suspension was compared with each cases and the impeller location and operation of mixing fuel tank was established.

  • PDF

Analysis of Gas-Solid Flow for the Optimum Design of Coal Splitter (입자분리기 최적 설계를 위한 다상 유동 해석)

  • Yok, Sim-Kyun;Ryu, Jae-Wook;Ik-Hyeong;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.11
    • /
    • pp.1604-1611
    • /
    • 2003
  • The experimental investigation of a coal splitter used in the 500㎿(e) boilers of fossil power plant is carried out to validate the design criteria. To predict air flow and the amount of particles at the exit, velocity and the weight of particles are measured on test planes using the coal splitter model with two-dimensional phase doppler particle analyzer and the glass fiber filter. It is found that the position of guide plate influences significantly both flow rates of gas and particle at the exit. Gas flow rate was a linear function of the guide plate, whereas particle flow rate was a exponential function of it.

CFD SIMULATIONS OF SOLID/LIQUID TWO-PHASE FLow IN AN AGITATOR (전산유체역학을 이용한 교반기 내부의 고체/액체 다상유동 해석)

  • Kim, Chi-Gyeom;Won, Chan-Shik;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.27-31
    • /
    • 2007
  • Glass particle distribution in a stirred solid/liquid systems was investigated using computational fluid dynamics(CFD). The numerical results were compared to experimental data from the available literature which investigated the local dispersed phase volume fraction by means of an endoscope technique. Eulerian multi-phase model and applications considered high loading of solid particle was used to investigate the influence of the particle concentration and mixing tank size on the solid distribution. A good agreement was obtained between the experimental data and simulation results. The results showed different solid particle distribution in an agitator by particle concentration and mixer size.

  • PDF

Transient Simulation of Solid/Liquid Two-Phase Flow in a Stirred Tank (교반기 내부의 고체/액체 다상 유동의 비정상상태 해석)

  • Kim, Chi-Gyeom;Yong, Suk-Jin;Won, Chan-Shik;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.236-239
    • /
    • 2008
  • In the present study, a transient glass particle distribution in a stirred solid/liquid mixer was investigated using computational fluid dynamics(CFD). The flow patterns and solid concentaration distriburion in a solid/liquid mixer formed by pitched paddle and baffles were predicted. The numerical results were compared to experimental data from the available literature. Eulerian multi-phase model was used to investigate the influence of the density of solid particle on the same impeller speed. A good agreement was obtained between the experimental data and simulation results.

  • PDF

Flow Field Separating Technique in Bubbly Flow using Discrete Wavelet (이산 웨이블릿을 이용한 Bubbly flow의 유통분리기법)

  • Jo, Hyo-Jae;Doh, Deog-Hee;Choi, Je-Eun;Takei, Masahiro;Kang, Byung-Yoon
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.777-783
    • /
    • 2008
  • Nowadays wavelet transforms are widely used for the analyses of PIV velocity vector fields. This is bemuse the wavelet provides not only spatial information of the velocity vectors but also of time and frequency domains. In this study, a discrete wavelet trC1f1$form has been applied to real PIV images of bubbly flows. The vector fields obtained by a self-made cross-correlation PIV algorithm were used for the discrete wavelet transform The performances of the discrete wavelet transform is investigated by changing the level of power of discretization. The decomposed images by the wavelet multiresolution showed conspicuous characteristics of the bubbly flows according to the level changes. The high spatial bubble concentrated area could be evaluated by the constructed discrete wavelet transform algorithm, at which high leveled wavelets could play a dominant roles to reveal the flow characteristics.

Natural Convection in a Water Tank with a Heated Horizontal Plate Facing Downward (아래로 향한 수평가열판이 있는 수조에서의 자연대류)

  • Yang, Sun-Kyu;Chung, Moon-Ki;Helmut Hoffmann
    • Nuclear Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.301-316
    • /
    • 1995
  • experimental and computational studies ore carried out to investigate the natural convection of the single phase flow in a tank with a heated horizontal plate facing downward. This is a simplified model for investigations of the influence of a core melt at the bottom of a reactor vessel on the thermal hydraulic behavior in a oater filled cavity surrounding the vessel. In this case the vessel is simulated by a hexahedron insulated box with a heated plate Horizontally mounted at the bottom of the box. The box with the heated plate is installed in a water filled hexahedron tank. Coolers are immersed in the U-type water volume between the box and the tank. Although the multicomponent flows exist more probably below the heated plate in reality, present study concentrates on the single phase flow in a first step prior to investigating the complicated multicomponent thermal hydraulic phenomena. In the present study, in order to get a better understanding for the natural convection characteristics below the heated plate, the velocity and temperature are measured by LDA(Laser Doppler Anemometry) and thermocouples, respectively. And How fields are visualized by taking pictures of the How region with suspended particles. The results show the occurrence of a very effective circulation of the fluid in the whole How area as the heater and coolers are put into operation. In the remote region below the heated plate the new is nearly stagnant, and a remarkable temperature stratification can be observed with very thin thermal boundary. Analytical predictions using the FLUTAN code show a reasonable matching of the measured velocity fields.

  • PDF