• Title/Summary/Keyword: 다변량 시계열

Search Result 84, Processing Time 0.027 seconds

Evaluation and Comparison of seasonal multivariate time series model construction with rainfall and site characteristics (강우 및 지점특성치를 이용한 계절형 다변량 시계열 모형 구축 평가 및 비교)

  • Kim, Taereem;Choi, Wonyoung;Shin, Hongjoon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.29-29
    • /
    • 2015
  • 수자원의 지속적인 관리 및 효율적인 활용을 위하여 수문량의 예측과 분석은 필수적인 과정이라 할 수 있으며 이에 따라 다양한 수문 모형이 구축되고 강우, 유량 등 대표적인 수문량의 예측이 수행되어져 왔다. 그 중에서도 수문 시계열 모형은 시간의 흐름에 따라 일정하게 기록되어온 수문 자료를 확률적인 과정을 통하여 모형을 구축하고 이를 바탕으로 미래 수문량을 예측하는 데활용되는 모형으로, 과거에 기록된 수문 패턴이 미래에도 지속된다는 가정 하에 구축된다. 일반적으로 시계열 모형은 하나의 자료계열로 모형을 구축하는 단변량 모형과 원 자료계열 외에 다른 자료계열을 고려하여 모형을 구축하는 다변량 모형이 있으며, 다변량 모형은 원 자료계열에 영향을 미치는 외부변수를 고려함으로써 두 자료계열간의 상관성을 모형에 반영할 수 있는 장점을 가지고 있다. 또한 자료계열의 계절성을 고려하여 시계열 모형을 구축할 경우, 수문 시계열이 가지고 있는 계절적 영향을 잘 반영할 수 있다. 따라서 본 연구에서는 계절성을 고려한 다변량 시계열 모형인 SARIMAX(Seasonal AutoRegressive Integrated Moving Average with eXogenous) 모형을 이용하여 대표적인 수공구조물인 댐의 유입량 예측을 수행하였다. 일반적으로 댐 유입량 예측에는 댐의 유입량과 상관성이 높은 강우가 외부변수로 사용되어져 왔으나, 이 외에도 영향을 미칠 수 있는 지점특성치를 고려하여 모형을 구축한 후 비교하였다.

  • PDF

Prediction of arrhythmia using multivariate time series data (다변량 시계열 자료를 이용한 부정맥 예측)

  • Lee, Minhai;Noh, Hohsuk
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.5
    • /
    • pp.671-681
    • /
    • 2019
  • Studies on predicting arrhythmia using machine learning have been actively conducted with increasing number of arrhythmia patients. Existing studies have predicted arrhythmia based on multivariate data of feature variables extracted from RR interval data at a specific time point. In this study, we consider that the pattern of the heart state changes with time can be important information for the arrhythmia prediction. Therefore, we investigate the usefulness of predicting the arrhythmia with multivariate time series data obtained by extracting and accumulating the multivariate vectors of the feature variables at various time points. When considering 1-nearest neighbor classification method and its ensemble for comparison, it is confirmed that the multivariate time series data based method can have better classification performance than the multivariate data based method if we select an appropriate time series distance function.

A Study on Air Demand Forecasting Using Multivariate Time Series Models (다변량 시계열 모형을 이용한 항공 수요 예측 연구)

  • Hur, Nam-Kyun;Jung, Jae-Yoon;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.1007-1017
    • /
    • 2009
  • Forecasting for air demand such as passengers and freight has been one of the main interests for air industries. This research has mainly focus on the comparison the performance between the univariate seasonal ARIMA models and the multivariate time series models. In this paper, we used real data to predict demand on international passenger and freight. And multivariate time series models are better than the univariate models based on the accuracy criteria.

Testion a Multivariate Process for Multiple Unit Roots (다변량 시계열 자료의 다중단위근 검정법)

  • Key Il Shin
    • The Korean Journal of Applied Statistics
    • /
    • v.7 no.1
    • /
    • pp.103-112
    • /
    • 1994
  • An asymptotic property of the estimated eigenvalues for multivariate AR(p) process which consists of vector of nonstationary process and vector of stationary process is developed. All components of the nonstationary process are assumed to reveal random walk behavior. The asymptotic property is helpful in understanding multiple unit roots. In this paper we show the stationay part in multivariate AR(p) process does not affect the limiting distribution of estimated eigenvalues associated with the nonstationary process. A test statistic based on the ordinary least squares estimator for testing a certain number of multiple unit roots is suggested.

  • PDF

Multivariate exponential smoothing models with application to exchange rates (다변량 지수평활모형을 이용한 환율 분석)

  • Lee, Yeonha;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.257-267
    • /
    • 2020
  • We introduce multivariate exponential smoothing models based on a vector innovations structural time series framework. The models enable us to exploit potential inter-series dependencies to improve the fit and forecasts of multivariate (vector) time series. Models are applied to forecast the exchange rates of the UK pound (UKP) and US dollar (USD) against the Korean won (KRW) observed on monthly basis; subseqently, we compare their performance with alternative models. We observe that the multivariate exponential smoothing models are superior to alternatives.

Outlier detection for multivariate long memory processes (다변량 장기 종속 시계열에서의 이상점 탐지)

  • Kim, Kyunghee;Yu, Seungyeon;Baek, Changryong
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.395-406
    • /
    • 2022
  • This paper studies the outlier detection method for multivariate long memory time series. The existing outlier detection methods are based on a short memory VARMA model, so they are not suitable for multivariate long memory time series. It is because higher order of autoregressive model is necessary to account for long memory, however, it can also induce estimation instability as the number of parameter increases. To resolve this issue, we propose outlier detection methods based on the VHAR structure. We also adapt the robust estimation method to estimate VHAR coefficients more efficiently. Our simulation results show that our proposed method performs well in detecting outliers in multivariate long memory time series. Empirical analysis with stock index shows RVHAR model finds additional outliers that existing model does not detect.

Comparison of Forecasting Performance in Multivariate Nonstationary Seasonal Time Series Models (다변량 비정상 계절형 시계열모형의 예측력 비교)

  • Seong, Byeong-Chan
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.1
    • /
    • pp.13-21
    • /
    • 2011
  • This paper studies the analysis of multivariate nonstationary time series with seasonality. Three types of multivariate time series models are considered: seasonal cointegration model, nonseasonal cointegration model with seasonal dummies, and vector autoregressive model in seasonal differences that are compared for forecasting performances using Korean macro-economic time series data. The cointegration models produce smaller forecast errors in short horizons; however, when longer forecasting periods are considered the vector autoregressive model appears preferable.

Feature Extraction of CNN-GRU based Multivariate Time Series Data for Regional Clustering (지역 군집화를 위한 CNN-GRU 기반 다변량 시계열 데이터의 특성 추출)

  • Kim, Jinah;Lee, Ji-Hoon;Choi, Dong-Wook;Moon, Nammee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.950-951
    • /
    • 2019
  • 시계열 데이터에 대한 군집화 관련 연구는 주로 통계 분석을 통해 이뤄지기 때문에 데이터가 갖는 특성을 완전히 반영하는 데 한계를 갖는다. 본 논문에서는 다변량 데이터에서의 군집화를 위하여 변수별로 시간에 따른 변화와 특징을 추출하기 위한 CNN-GRU(Convolutional Neural Network - Gated Recurrent Unit) 기반의 신경망 모델을 제안한다. CNN을 활용하여 변수별로 갖는 특성을 파악하고자 하였으며, GRU을 통해 전체 시간에 따른 소비 추세를 도출하고자 하였다. 지역별로 업종에 따라 사용된 2년 치의 실제 카드 데이터를 활용하였으며, 유사한 소비 추세를 보이는 지역을 군집화하는데 이를 적용하였다. 결과적으로, 다변량 시계열 데이터를 통해 전체적인 흐름을 반영하여 패턴화했다는 점에서 의의를 갖는다.

Asymmetric CCC Modelling in Multivariate-GARCH with Illustrations of Multivariate Financial Data (금융시계열 분석을 위한 다변량-GARCH 모형에서 비대칭-CCC의 도입 및 응용)

  • Park, R.H.;Choi, M.S.;Hwan, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.821-831
    • /
    • 2011
  • It has been relatively incomplete in the field of financial time series to adapt asymmetric features to multivar ate GARCH processes (McAleer et al., 2009). Retaining constant conditional correlation(CCC) structure, this article pursues to introduce asymmetric GARCH modelling in analysing multivariate volatilities in time series in a practical point of view. Multivariate Korean financial time series are analyzed in detail to compar our theory with conventional methodologies including GARCH and EGARCH.

A Survey on Unsupervised Anomaly Detection for Multivariate Time Series (다변량 시계열 이상 탐지 과업에서 비지도 학습 모델의 성능 비교)

  • Juwan Lim;Jaekoo Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • It is very time-intensive to obtain data with labels on anomaly detection tasks for multivariate time series. Therefore, several studies have been conducted on unsupervised learning that does not require any labels. However, a well-done integrative survey has not been conducted on in-depth discussion of learning architecture and property for multivariate time series anomaly detection. This study aims to explore the characteristic of well-known architectures in anomaly detection of multivariate time series. Additionally, architecture was categorized by using top-down and bottom-up approaches. In order toconsider real-world anomaly detection situation, we trained models with dataset such as power grids or Cyber Physical Systems that contains realistic anomalies. From experimental results, we compared and analyzed the comprehensive performance of each architecture. Quantitative performance were measured using precision, recall, and F1 scores.