본 논문은 고차 뉴런의 문제점으로 지적되고 있는 뉴런이 방대하게 증가하는 문제를 해결하고자, 최적의 뉴런을 생성하고 생성되어진 고차 뉴런 중 일정 비율로 뉴런의 연결강도를 도태시켜 감에 따라 네트워크상에 나타나는 특성을 비교하였다. 본 논문은 고차 뉴런을 이용한 Kohonen의 자기 조직화 맵의 고차 뉴런부에 일정 비율로 연결강도를 도태한 후 인식률을 얻는 형태로 시뮬레이션을 하였다. 특히, 종래 형태의 고차 뉴런을 이용한 Kohonen 자기 조직화 맵의 알고리즘을 변형없이 사용하였으며 중복되는 뉴런을 최대한 억제하기 위해 2차 뉴런만을 생성한 네트워크 구조 위에 입력 데이터의 특징을 유지하고 고차 뉴런의 특징을 더욱 활성화하기 위해 일정한 양의 연결강도를 도태시킴으로써 출력면에서 국소집중 반응에 의한 정확한 인식률 향상 등을 조사하는 시뮬레이션을 하였다. 본 제안 모델의 특성을 살펴보기 위해 60개의 데이터로 이루어진 금속 소나 음데이터와 암석 소나 음 데이터를 이용하여 금속인지 암석인지를 판별하는 시뮬레이션을 하였다.
Proceedings of the Korea Inteligent Information System Society Conference
/
2005.05a
/
pp.169-185
/
2005
신경계의 뉴런 구조는 흥분 뉴런과 억제 뉴런으로 구성되며 각각의 흥분 뉴런과 억제 뉴런은 주동근 뉴런(agonistic neuron)에 의해 활성화되며 길항근 뉴런(antagonist neuron)에 의해 비활성화 된다. 본 논문에서는 인간 신경계의 생리학적 뉴런 구조를 분석하여 퍼지 논리를 이용한 생리학적 퍼지 신경망을 제안한다. 제안된 구조는 주동근 뉴런에 의해 흥분 뉴런이 될 수 있는 뉴런들을 선택하여 흥분시켜 출력층으로 전달하고 나머지 뉴런들을 억제시켜 출력층에 전달시키지 않는다. 신경계를 기반으로 한 제안된 생리학적 퍼지 신경망의 학습구조는 입력층, 학습 데이터의 특징을 분류하는 중간층, 그리고 출력층으로 구성된다. 제안된 퍼지 신경망의 학습 및 인식 성능을 평가하기 위해 정확성이 요구되는 의학의 한 분야인 기관지 편평암 영상인식과 영상 인식의 주요 응용 분야인 차량 번호판 인식에 적용하여 기존의 신경망과 성능을 비교 분석하였다. 실험 결과에서는 제안된 생리학적 퍼지 신경망이 기존의 신경망보다 학습 시간과 수렴성이 개선되었을 뿐만 아니라, 인식에 있어서도 우수한 성능이 있음을 확인하였다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2000.10a
/
pp.509-513
/
2000
아홉 개의 계층구조 형태의 뉴런을 LINUX를 기초로 한 GENESIS를 이용하여 입력전류에 대한 각 뉴런의 신경전달 메카니즘을 분석하였고 마지막 뉴런에 미치는 활성전위 영향을 시뮬레이션을 해보았다. 본 연구에서는 다른 뉴런과 연결해주며 신호를 전달해주는 시냅스의 웨이트를 중간계층 뉴런에서 적게 연결하여 비정상 상태의 뉴런을 만들어 보았다. 시뮬레이션 결과 신경세포를 전기회로 적인 모델을 기준으로 설계한 뉴런은 미세한 자극의 변화해 매우 민감하게 반응 하였고, 마지막 뉴런 에서는 활성전위 간격이 정상상태의 다른 세포와 비교해 보았으며, 결과적으로 뉴런의 시냅스 웨이트가 적으면 신경전달에 이상이 발생하여 세포가 손상됨을 알 수 있었다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2011.05a
/
pp.87-90
/
2011
본 논문에서는 유전자 알고리즘에 SOM 알고리즘을 적용하여 효율적으로 경로를 탐색할 수 있는 방법을 제안한다. 제안된 경로 탐색 방법은 효율적인 경로 탐색에 앞서 유전자 알고리즘에 의해 도출된 각각의 결과 좌표를 뉴런으로 설정하고 각 뉴런들의 모든 거리 값을 SOM 알고리즘에 적용하여 거리에 대한 가중치를 구한다. 뉴런 선택 조건(가장 적은 거리 가중치, 이전에 선택되지 않았던 뉴런)을 만족하는 뉴런 및 해당 뉴런의 이웃 반경 내에 존재하는 뉴런들의 연결 강도를 가우시안 분포(오차율 분포)에 적용하여 변경하고, 가장 강한 연결 강도를 가지는 승자 뉴런에 해당하는 경로를 선택한다. 이러한 과정을 뉴런의 개수만큼 반복하여 모든 뉴런들의 경로를 도출한다. 제안된 방법을 실험한 결과, 기존의 유전자 알고리즘을 이용한 방법보다 제안된 방법이 효율적인 경로를 탐색하는 것을 확인할 수 있었다.
Journal of the Korea Institute of Information and Communication Engineering
/
v.4
no.4
/
pp.869-874
/
2000
아홉 개의 계층구조 형태의 뉴런을 LINUX를 기초로 한 GENESIS를 이용하여 입력전류에 대한 각 뉴런의 신경전달 메카니즘을 분석하였고 마지막 뉴런에 미치는 활성전위 영향을 시뮬레이션을 해 보았다. 본 연 구에서는 다른 뉴런과 연결해주며 신호를 전달해주는 시냅스의 웨이트를 중간계층 뉴런에서 적게 연결하여 비정상 상태의 뉴런을 만들어 보았다. 시뮬레이션 결과 신경세포를 전기회로 적인 모델을 기준으로 설계한 뉴런은 미세한 자극의 변화해 매우 민감하게 반응 하였고, 마지막 뉴런 에서는 활성전위 간격이 정상상태의 다른 세포와 비교해 보았으며, 결과적으로 뉴런의 시냅스 웨이트가 적으면 신경전달에 이상 이 발생하여 세 포가 손상됨을 알 수 있었다.
본 논문은 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입, 고차 뉴런을 이용한 Kohonen의 자기 조직화 맵을 제안한다. 일반적인 Kohonen Feature Map의 특징은 입력신호를 받아 출력 면(Kohonen Feature Map) 내의 특정한 위치 주위에 집중하는 메커니즘으로 즉, 국소집중 반응을 구하는 구조이다. 본 논문에서는 종래형의 Kohonen Feature Map의 특징을 보유하며 교사 있는 학습기의 Kohonen Feature Map에 고차 뉴런을 도입하여 국소집중반응 및 특징 축출이 용이하도록 네트워크 구조를 개선한 것이다. 특히, 일차 뉴런의 문제점인 비선형 분리 문제에 대하여 교사 있는 학습기의 Kohonen Feature Map의 입력층에 고차 뉴런을 도입함으로 비선형 분리 가능한 형태의 네트워크 구조로 형성하였다. 그러나, 일반적인 고차 뉴런의 문제점을 보안하기 위해 본 논문에서는 오직 2차 뉴런만을 생성하였으며 중복되는 뉴런을 최대한 억제하였다. 본 제안 모델의 특성을 살펴보기 위해 XOR문제와 20개의 Alphabet을 식별하는 패턴인식 시뮬레이션을 했으며, 본 제안 모델의 범화능력을 알아보기 위하여 Mirror Symmetry를 사용하여 계산기 시뮬레이션을 했다. 그 결과, 본 제안 모델이 종래형의 네트워크 구조보다 뛰어난 인식률을 얻을 수 있었다.
Proceedings of the Korean Information Science Society Conference
/
2008.06c
/
pp.222-225
/
2008
신경계에서 뉴런은 다른 한 뉴런에 두 개 이상의 시냅스를 통해 연결되곤 한다. 이런 다중 시냅스 연결은 시냅스 가중치를 높이는 것과 마찬가지라고 보는 것이 일반적이다. 본 논문에서는 다른 가능성을 제시한다. 두 뉴런 사이의 다중 시냅스 연결이 시냅스전 (presynaptic) 뉴런으로부터 스파이크 (spike) 입력을 받는 한 시냅스후 (postsynaptic) 뉴런의 반응에 어떤 영향을 주는지 살펴보았다. 다중 시냅스 연결이 있는 경우, 단일 시냅스 연결만 있는 경우와는 다른 입력 패턴에 대해서 시냅스 후 뉴런이 반응했다. 다중 시냅스를 포함하는 경우끼리도 뉴런 상의 연결 위치가 달라지면 또 다른 입력 패턴에 대해서만 반응했다. 이 결과들은 다중 시냅스 연결이 가중치 증가와 다른 역할을 하고, 다중 시냅스 연결을 이루는 각 시냅스의 위치에 따라 신경망의 정보 처리 특성이 달라질 수도 있음을 암시한다.
The Neuron structure in a nervous system consists of inhibitory neurons and excitory neurons. Both neurons are activated by agonistic neurons and inactivated by antagonist neurons. In this paper, we proposed a physiological fuzzy neural network by analyzing the physiological neuron structure in the nervous system. The proposed structure selectively activates the neurons which go through a state of excitement caused by agonistic neurons and also transmit the signal of these neurons to the output layers. The proposed physiological fuzzy neural networks based on the nervous system consists of a input player, and the hidden layer which classifies features of learning data, and output layer. The proposed fuzzy neural network is applied to recognize bronchial squamous cell carcinoma images and car plate images. The result of the experiments shows that the learning time, the convergence, and the recognition rate of the proposed physiological fuzzy neural networks outperform the conventional neural networks.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
1996.10a
/
pp.239-242
/
1996
본 논문에서는 BP(Back Propagation)에 비해서 빠른 학습시간과 다른 경쟁학습 신경회로망 알고리즘에 비해서 비교적 우수한 성능으로 패턴인식 등에 많이 이용되고 있는 LVQ(Learning Vector Quantization) 알고리즘의 성능을 향상시키기 위한 방법을 논의하고자 한다. 일반적으로 LVQ는 음(negative)의 학습을 하기 때문에 초기 가중치가 제대로 설정되지 않으면 발산할 수 있다는 단점이 있으며, 경쟁학습 계열의 신경망이기 때문에 출력 층의 뉴런 수에 따라 성능에 큰 영향을 받는다고 알려져 있다.[1]. 지도학습 형태를 지닌 LVQ의 경우에 학습패턴이 n개의 클래스를 가지고, 각 클래스 별로 학습패턴의 수가 같은 경우에 일반적으로 전체 출력뉴런에 대해서 (출력뉴런수/n)개의 뉴런을 각 클래스의 목표(desired) 클러스터로 할당하여 학습을 수행하는데, 본 논문에서는 각 클래스에 동일한 수의 출력뉴런을 할당하지 않고, 학습데이터에서 각 클래스의 분산을 추정하여 각 클래스의 분산을 추정분산에 비례하게 목표 출력뉴런을 할당하고, 초기 가중치도 추정분산에 비례하게 각 클래스의 초기 임의 위치 입력백터를 사용하여 학습을 수행하는 방법을 제안한다. 본 논문에서 제안하는 방법은 분류하고자 하는 데이터에 대해서 필요한 최적의 출력뉴런 수를 찾는 것이 아니라 이미 결정되어 있는 출력뉴런 수에 대해서 각 클래스에 할당할 출력 뉴런 수를 데이터의 추정분산에 의해서 결정하는 것으로, 추정분산이 크면 상대적으로 많은 출력 뉴런을 할당하고 작으면 상대적으로 적은 출력뉴런을 할당하고 초기 가중치도 마찬가지 방법으로 결정하며, 이렇게 하면 정해진 출력뉴런 개수 안에서 각 클래스 별로 분류의 어려움에 따라서 출력뉴런을 할당하기 때문에 미학습 뉴런이 줄어들게 되어 성능의 향상을 기대할 수 있으며, 실험적으로 제안된 방법이 더 나은 성능을 보임을 확인했다.initially they expected a more practical program about planting than programs that teach community design. Many people are active in their own towns to create better environments and communities. The network system "Alpha Green-Net" is functional to support graduates of the course. In the future these educational programs for citizens will becomes very important. Other cities are starting to have their own progrms, but they are still very short term. "Alpha Green-Net" is in the process of growing. Many members are very keen to develop their own abilities. In the future these NPOs should become independent. To help these NPOs become independent and active the educational programs should consider and teach about how to do this more in the future.단하였는데 그 결과, 좌측 촉각엽에서 제4형의 신경연접이 퇴행성 변화를 나타내었다. 그러므로 촉각의 지각신경세포는 뇌의 같은 족 촉각엽에 뻗어와 제4형 신경연접을 형성한다고 결론되었다.$/ 값이 210 $\mu\textrm{g}$/$m\ell$로서 효과적인 저해 활성을 나타내었다 따라서, 본 연구에서 빈
We have investigated the role of slow inhibitory neurons in spontaneous activity using a model network controlled by stochastic mean field theory based on Integrated-and-Fire excitatory and fast inhibitory neurons. It is found that inputting slow inhibitory neurons to such network induces stable spontaneous activity at a much lower threshold than without slow inhibitory neurons in the network. This threshold range is low enough to be considered as biological threshold of cortical neurons. Only slow inhibitory neurons can give adjustable negative feedback in the network keeping lower rate and lower threshold.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.