• Title/Summary/Keyword: 뇌 기반 학습

Search Result 79, Processing Time 0.02 seconds

수학 교실에서 뇌-기반 학습에 대한 연구

  • Sin, In-Seon;Jang, Yeong-Il;Gwon, Jeom-Rye
    • Communications of Mathematical Education
    • /
    • v.14
    • /
    • pp.177-195
    • /
    • 2001
  • 인간의 교수${\cdot}$학습은 본질적으로 뇌 기능과 많은 관련을 맺고 있기 때문에 뇌-기반 학습에서는 우리의 뇌가 최적으로 학습하는 방식에 기초해 접근을 시도한다. 지난 30년간의 뇌에 대한 연구는 교수${\cdot}$학습에 대해서 이용할 만한 많은 정보를 제시하고 있다. 많은 교육연구가들은 뇌 연구를 기초로 뇌가 최적으로 학습하는 뇌-친화적 환경을 도입하였고, Politano & Paquin(2000)은 현행교실에 실제로 이용 가능한 뇌-기반 환경을 창조하기 위한 기초로서 10가지 요소를 제시하면서 뇌-기반 학습에서 학습자는 자신에게 익숙한 학습감각을 가지고 있으며 그것을 통한 학습이 효과적임을 말하였다. 수학교육에서도 이와 같이 뇌-기반 학습을 배경으로 하는, 학습자의 학습감각을 고려한 교수${\cdot}$학습이 의미있다고 할 수있다. 본 연구에서는 뇌기반 학습의 의미를 고찰하고, 제 7차 교육과정이 실행되는 초등학교 4학년, 중학교 2학년, 고등학교 1학년에 교실에 대한 학습감각을 조사하였으며, 수학 교실에서 학습자의 학습감각을 고려한 수업활동을 제시하였다.

  • PDF

Brain-based Instructional Design for Android Programming Lessons (안드로이드 프로그래밍 수업을 위한 뇌기반 교수학습 설계)

  • Choi, Sook-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.601-603
    • /
    • 2018
  • Studies are under way to understand how the brain learns and how it works most effectively through the development of brain science. The purpose of this study is to apply brain - based learning principles as a way to effectively overcome the characteristics of the programming lesson and the difficulties that arise during the practice. In other words, by applying the brain-based learning principle appropriate to the characteristics of the Android programming class, the teaching and learning is designed so that the learner can effectively learn the programming.

  • PDF

Brain-based Learning Science: What can the Brain Science Tell us about Education? (뇌기반 학습과학: 뇌과학이 교육에 대해 말해 주는 것은 무엇인가?)

  • Kim, Sung-Il
    • Korean Journal of Cognitive Science
    • /
    • v.17 no.4
    • /
    • pp.375-398
    • /
    • 2006
  • Humans learn by observing, hearing, imitating, doing, and feeling. The brain(cortex) is the central tore of this process. The recent rapid progress of brain science and the active interdisciplinary collaboration between brain science and cognitive science opens a new possibility. That is a new research Held called 'Brain-Based learning Science', 'Edutational Neuroscienre', or 'NeuroEduration' This study reviews the nature and basic assumptions of brain-based learning science, current directions in educational neuroscience research, the neuro-myths, educational implications of neuroscience, and a possibility of making a meaningful connection between brain science and education. Also the future prospects and limitations of the brain-based learning science are discussed.

  • PDF

The Effects of Brain Education Based on Learning Camp Program for Children's self-directed learning ability and attitude (뇌교육 기반 학습캠프 프로그램이 아동의 자기주도적 학습 능력 및 태도에 미치는 영향)

  • Shin, Jae-Han;Kim, Hye-Seon;Kim, Jin-A
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.477-485
    • /
    • 2018
  • The aim of this study was to improve the 'self-directed learning ability and attitudeselementary school students by applying a brain education-based learning program based on brain science in the form of a short term camp in consideration of the elementary school students' brain characteristics and mechanisms. For this purpose, this study was conducted on 4, 5, and 6 elementary school students in Korea. The brain training based learning camp program was conducted for two nights and three days. The camps were conducted twice from February 3 to 5, 2017 with 45 students from grade 6 and from February 22 to July 24, 2017, with 56 students from grades 4 and 5, 101 students in total. The conclusions of this study are as follows. The brain education-based learning camp program was found to be effective in improving the elementary school students' self-directed learning ability and learning attitude. First, the brain education-based learning camp program can increase the learning concentration through brain gymnastics, breathing, and meditation. Second, brain training called 'Brain Screen' among the brain education-based learning camp program can improve the brain ability of memory. Third, it can establish a self - directed learning philosophy of 'My study is done by me' by giving reason and motivation to study through the brain education-based learning camp program.

Brainwave Activities of the Cognitive Individual Differences in Computerized Arithmetic Addition by Implicit Association Test (컴퓨터 덧셈학습의 인지적 개인차에 대한 암묵적 연합검사를 적용한 뇌파 분석)

  • Kwon, Hyung-Kyu
    • Journal of The Korean Association of Information Education
    • /
    • v.15 no.4
    • /
    • pp.635-644
    • /
    • 2011
  • This research analyzed the brainwave activities and brain hemispherity to find out any implications to design the connections between the activities of the brain function and the computerized arithmetic addition in two difficulty levels: easy: 1-5 vs. hard: 6-9. Thus, in developing the brain based math learning for the computer education by implicit association test(IAT) indicated the significant results for the exclusive brain location and the brain hemispherity on the theta, alpha, low alpha, beta brainwaves by QEEG analysis. The results of this study physiologically supported the theoretical background for the computerized math learning skills as well as the math learning material development. It shows the difficulty levels of math information education and the brain activities on cognitive process of the learner continued on the possible investigation of the brain science.

  • PDF

Quantitative EEG research by the brain activities on the various fields of the English education (영어학습 유형별 뇌기능 활성화에 대한 정량뇌파연구)

  • Kwon, Hyung-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.3
    • /
    • pp.541-550
    • /
    • 2009
  • This research attempted to find out any implications for strategies to design and develop the connections between the activities of the brain function and the fields of English learning (dictation, word level, speaking, word memory, listening). Thus, in developing the brain based learning model for the English education, attempts need to be made to help learners to keep the whole brain toward learning. On this point, this study indicated the significant results for the exclusive brain location and the brainwaves on the each English learning field by the quantitative EEG analysis. The results of this study presented the guidelines for the balanced development of the left brain and the right brain to train the specific site of the brain connected to the English learning fields. In addition, whole brain training model is developed by the quantitative EEG data not by the theoretical learning methods focused on the right brain training.

  • PDF

A Meta-Analytic Review of Effects of Brain-Based Education (뇌기반 교육의 효과에 대한 메타분석)

  • Jang, Hwan Young;Jang, Bong Seok
    • Journal of Practical Engineering Education
    • /
    • v.12 no.1
    • /
    • pp.41-47
    • /
    • 2020
  • This study aims to investigate effects of brain-based learning. 27 primary studies were selected through rigorous search process and analyzed through meta-analytic methods. Research findings are as follows. First, the total effect size was .67. Second, the effect of dependent variables was academic achievement, cognitive domain, and affective domain in order. Third, with respect to types of cognitive domain, the effect was self-regulation, creativity, competence, communication, and research ability in order. Fourth, the effect of affective domains was sociality, learning interest, and subject attitude in order. Fifth, regarding development of cognitive ability, the effect size was combined, brain training, learning environments, and right brain activities in order. Sixth, the effect of learning activities was memory improvement and attention enhancement in order.

A Study on the Effects of Early Childhood Design Education Program Activities Based on Brain-Compatible Learning Principles (뇌 기반 학습원리를 적용한 유아디자인교육 활동이 유아의 창의성과 친사회적 행동에 미치는 영향)

  • Ahn, Gyoung Suk;Shin, Ae Sun
    • Korean Journal of Child Education & Care
    • /
    • v.17 no.2
    • /
    • pp.45-73
    • /
    • 2017
  • The purpose of this study was to suggest the effects of early childhood design program based on brain-compatible learning principles. Subjects were thirty-six children from two class of I kindergarten and S kindergarten in K city. One class was assigned to an experimental group and had early childhood education program activities based on brain-compatible learning principles and the other class was assigned to a comparative group the general art education program activities. The results of this study are as follows. First, there was a significant difference between the experimental group and the comparative group in their fluency, originality, sensitivity of creativity. Second, participants in the experimental group also score higher on the helpful act, communication skill, sharing skill, empathy, and regulation of emotion. Therefore, early childhood design education program based on brain-compatible learning principles should be considered as a meaningful alternative method for promoting children's creativity and prosocial behaviors.

뇌파기반 뇌-컴퓨터 인터페이스 기술

  • 음태완;김응수
    • Communications of the Korean Institute of Information Scientists and Engineers
    • /
    • v.22 no.2
    • /
    • pp.5-19
    • /
    • 2004
  • 사람의 뇌에 관한 연구는 고대 그리스 시대에서부터 제기 되어왔으며, 사람을 해부하여 인간의 뇌가 수많은 뉴런으로 이루어 졌다는 것을 밝혀내었다. 이 뉴런들의 활동에 의하여 전기적 신호가 발생한다는 것을 알았고, 인간의 모든 행동, 학습, 사고, 기억활동을 제어하는 뇌의 기능을 이해하기 위한 연구가 계속되었다.

The Development of the Problem-based EEG Feedback Training Design Model for the Learning of the Gifted Child (뇌파훈련을 통한 문제기반 영재학습 모형 개발)

  • Kwon, Hyung-Kyu;Lee, Kil-Jae
    • 한국정보교육학회:학술대회논문집
    • /
    • 2007.01a
    • /
    • pp.245-254
    • /
    • 2007
  • 본연구는 문제중심해결 과정에서 나타나는 뇌파를 활용한 뉴로피드백 훈련방법으로 자신의 의지에 의해 적절한 뇌파를 구성하여 문제기반 인지능력을 향상시키게 된다. 다양한 영재학습 유형 및 영재아를 뇌파분석에 따른 영역화를 통하여 객관적인 문제기반접근을 통한 표준화된 학습모형을 설계한 것이다. 뇌파는 뇌의 활동상태에 따라 다르게 나타나며, 자신의 뇌에 다양한 훈련으로 피드백을 받게 되면 특정파에 대한 조절능력을 갖게 된다. 본 연구에서는 뇌파조절을 통한 영재학습모형을 개발하여 영재학습능력 향상을 위한 영재프로그램의 설계모형을 개발하였다.

  • PDF