• Title/Summary/Keyword: 뇌신경과학

Search Result 90, Processing Time 0.022 seconds

A Study on Legal Regulation of Neural Data and Neuro-rights (뇌신경 데이터의 법적 규율과 뇌신경권에 관한 소고)

  • Yang, Ji Hyun
    • The Korean Society of Law and Medicine
    • /
    • v.21 no.3
    • /
    • pp.145-178
    • /
    • 2020
  • This paper examines discussions surrounding cognitive liberty, neuro-privacy, and mental integrity from the perspective of Neuro-rights. The right to control one's neurological data entails self-determination of collection and usage of one's data, and the right to object to any way such data may be employed to negatively impact oneself. As innovations in neurotechnologies bear benefits and downsides, a novel concept of the neuro-rights has been suggested to protect individual liberty and rights. In Oct. 2020, the Chilean Senate presented the 'Proyecto de ley sobre neuroderechos' to promote the recognition and protection of neuro-rights. This new bill defines all data obtained from the brain as neuronal data and outlaws the commerce of this data. Neurotechnology, especially when paired with big data and artificial intelligence, has the potential to turn one's neurological state into data. The possibility of inferring one's intent, preferences, personality, memory, emotions, and so on, poses harm to individual liberty and rights. However, the collection and use of neural data may outpace legislative innovation in the near future. Legal protection of neural data and the rights of its subject must be established in a comprehensive way, to adapt to the evolving data economy and technical environment.

What is the Potential of Animal Models to Inform Occupational Therapy Theories and Interventions From the Perspective of Neuroscience? (신경과학적 관점으로 본 작업치료에서 동물 모델의 필요성)

  • Park, Ji-Hyuk;Ahmad, S. Omar
    • Therapeutic Science for Rehabilitation
    • /
    • v.1 no.1
    • /
    • pp.39-56
    • /
    • 2012
  • Introduction : Animal studies cannot be applied directly to Occupational Therapy(OT) intervention protocol. However, animal models still provide essential evidences and knowledge to improve OT practice and to develop OT theories as well as human studies do. The purpose of this scholarly paper is to explore the potential of animal models to inform OT theory and practice particularly as it relates to neuroscience. Body : The animal models provide related knowledge for a better understanding of the mechanism of diseases and related neural networks. Based on this knowledge, researchers can test their hypothesis of neural disease. In addition, accumulated animal studies contribute to introduce the new approaches to human diseases and to improve the effectiveness of treatment. Conclusions : Animal models of neurological disease are critical and have the potential to improve OT practice and theory in many ways. Therefore, OT researchers need to pay more attention to animal models in addition human studies.

The Effects of Regular Taekwondo Exercise on Brain wave activation and Neurotrophic Factors in Undergraduate male students (규칙적인 태권도 운동이 남자 대학생의 뇌파 활성화 및 뇌신경성장인자에 미치는 영향)

  • Kim, Young-Il;Ok, Duck-Pil;Cho, Su-Youn
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.2
    • /
    • pp.412-422
    • /
    • 2018
  • The purpose of this study was to investigate effects of 12-weeks aerobic exercise and taekwondo exercise on brain wave activation and brain-derived neurotrophic factors in undergraduate male students. Twenty four male subjects participated in this study. They were separated into a Control group(CG; n=8), Aerobic training group (ATG; n=8) and Taekwondo training group(TTG; n=8). ATG and TTG participated in Aerobic exercise training and Taekwondo exercise training for 12 weeks, 50~80 minutes per day, 3 times a week at 60~80% HRR respectively. All data were analyzed by repeated measures two-way ANOVA. As a result, there were no significant differences in the body composition and brain activation in all groups. However BDNF increased significantly after 12 weeks in the aerobic training groups(ATG). It is suggest that 12 weeks of regular Taekwondo exercise training did not statistically affect brain activation and neurotrophic factors in undergraduate students.

Exercise and Neuroplasticity: Benefits of High Intensity Interval Exercise (운동과 뇌신경가소성: 고강도 인터벌 운동의 효과성 고찰)

  • Hwang, Ji Sun;Kim, Tae Young;Hwang, Moon-Hyon;Lee, Won Jun
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.129-139
    • /
    • 2016
  • Exercise increases the expression and interaction of major neurotrophic factors such as brain-derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF) at both central and peripheral tissues, which contributes to improved brain and neural plasticity and cognitive function. Previous findings have been to understand the effect of light or moderate intensity aerobic exercise on neurotrophic factors and cognitive function, not that of high intensity aerobic exercise. However, recent findings suggest that high intensity interval training is a safe, less time-consuming, efficient way to improve cardiorespiratory fitness and weight control, thus American College of Sport Medicine (ACSM)’s guidelines for exercise prescription for various adult populations also recommend the application of high intensity interval training to promote their overall health. High intensity interval training also enhances the expression of BDNF, IGF-1, and VEGF at the brain and peripheral tissues, which improves cognitive function. Increased frequency of intermittent hypoxia and increased usage of lactate as a supplementary metabolic resource at the brain and neural components are considered a putative physiological mechanism by which high intensity interval training improves neurotrophic factors and cognitive function. Therefore, future studies are required to understand how increased hypoxia and lactate usage leads to the improvement of neurotrophic factors and what the related biological mechanisms are. In addition, by comparing with the iso-caloric moderate continuous exercise, the superiority of high intensity interval training on the expression of neurotrophic factors and cognitive function should be demonstrated by associated future studies.

Neurotechnologies and civil law issues (뇌신경과학 연구 및 기술에 대한 민사법적 대응)

  • SooJeong Kim
    • The Korean Society of Law and Medicine
    • /
    • v.24 no.2
    • /
    • pp.147-196
    • /
    • 2023
  • Advances in brain science have made it possible to stimulate the brain to treat brain disorder or to connect directly between the neuron activity and an external devices. Non-invasive neurotechnologies already exist, but invasive neurotechnologies can provide more precise stimulation or measure brainwaves more precisely. Nowadays deep brain stimulation (DBS) is recognized as an accepted treatment for Parkinson's disease and essential tremor. In addition DBS has shown a certain positive effect in patients with Alzheimer's disease and depression. Brain-computer interfaces (BCI) are in the clinical stage but help patients in vegetative state can communicate or support rehabilitation for nerve-damaged people. The issue is that the people who need these invasive neurotechnologies are those whose capacity to consent is impaired or who are unable to communicate due to disease or nerve damage, while DBS and BCI operations are highly invasive and require informed consent of patients. Especially in areas where neurotechnology is still in clinical trials, the risks are greater and the benefits are uncertain, so more explanation should be provided to let patients make an informed decision. If the patient is under guardianship, the guardian is able to substitute for the patient's consent, if necessary with the authorization of court. If the patient is not under guardianship and the patient's capacity to consent is impaired or he is unable to express the consent, korean healthcare institution tend to rely on the patient's near relative guardian(de facto guardian) to give consent. But the concept of a de facto guardian is not provided by our civil law system. In the long run, it would be more appropriate to provide that a patient's spouse or next of kin may be authorized to give consent for the patient, if he or she is neither under guardianship nor appointed enduring power of attorney. If the patient was not properly informed of the risks involved in the neurosurgery, he or she may be entitled to compensation of intangible damages. If there is a causal relation between the malpractice and the side effects, the patient may also be able to recover damages for those side effects. In addition, both BCI and DBS involve the implantation of electrodes or microchips in the brain, which are controlled by an external devices. Since implantable medical devices are subject to product liability laws, the patient may be able to sue the manufacturer for damages if the defect caused the adverse effects. Recently, Korea's medical device regulation mandated liability insurance system for implantable medical devices to strengthen consumer protection.

화제의연구(3) - 쥐 뇌에 배아줄기세포 이식, 신경세포 생성실험 성공

  • Korean Federation of Science and Technology Societies
    • The Science & Technology
    • /
    • v.35 no.4 s.395
    • /
    • pp.20-21
    • /
    • 2002
  • 포천중문의대 차병원 세포유전자연구소의 연구팀은 국내 처음으로 쥐의 배아 줄기세포를 살아있는 쥐의 뇌에 이식하여 손상된 뇌신경의 기능을 회복시킬 수 있는 뇌세포를 만드는데 성공했다. 이 연구팀은 쥐실험과 같은 연구과정을 사람에게 적용하는 실험을 하기 위해 오는 5월 '줄기세포치료이식센터'를 완공할 계획이다.

  • PDF

The Effects of Regular Taekwondo Exercise on Brain wave activation and Neurotrophic Factors in Undergraduate male students (16주간의 태권도 프로그램이 중년 비만 여성의 뇌신경성장인자 및 인지기능에 미치는 영향)

  • Ha, Min-Seong;Roh, Hee-Tae;Park, Hae-Chan;Cho, Su-Youn
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.354-361
    • /
    • 2020
  • The purpose of this study was to investigate the effects of regular taekwondo training on neurotrophic factors and cognitive function in obese middle-aged women. Thirty-three middle-aged women with obesity were selected for this study and randomly assigned into a control group(CG, n=18) and an taekwondo group(TG, n=15). The TG performed taekwondo training 5 times weekly for 16 weeks, while the CG did not exercise training. Serum brain-derived neurotrophic factor(BDNF), vascular endothelial growth factor(VEGF), and insulin-like growth factor-1(IGF-1) levels were analyzed and Stroop Color and Word tests were performed before and after the intervention. The serum BDNF and IGF-1 levels were significantly increased in the TG after the intervention(p<.05). On the other hand, no statistically significant differences were found in the serum VEGF levels, or in the Stroop Color and Word Test scores(p>.05). These results suggest that regular taekwondo training may be affects levels of peripheral neurotrophic factors but not cognitive function in obese middle-aged women.

Protective effects of Aruncus dioicus var. kamtschaticus extract against hyperglycemic-induced neurotoxicity (포도당 처리로 유도된 뇌신경세포 독성에 대한 눈개승마 추출물의 보호효과)

  • Park, Su Bin;Lee, Uk;Kang, Jin Yong;Kim, Jong Min;Park, Seon Kyeong;Park, Sang Hyun;Choi, Sung-Gil;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.49 no.6
    • /
    • pp.668-675
    • /
    • 2017
  • To assess the physiological effects of Aruncus dioicus var. kamtschaticus extract on cytoxicity of a neuronal cell line, antioxidant activity, and neuroprotection against intensive glucose-induced oxidative stress were quantitated. Compared to the other fractions, the ethyl acetate fraction of Aruncus dioicus var. kamtschaticus (EFAD) showed the highest total phenolics and flavonoids. The 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) assay and malondialdehyde inhibitory effect test confirmed the superior antioxidant activity of EFAD. Moreover, EFAD also decreased the intracellular ROS level and suppressed neuronal cell death against intensive glucose- or $H_2O_2$-induced oxidative stress. Additionally, assessment of ${\alpha}$-glucosidase and acetylcholinesterase inhibitory activities revealed that EFAD was an effective inhibitor of ${\alpha}$-glucosidase and acetylcholinesterase. Finally, high-performance liquid chromatography analysis identified caffeic acid as the main ingredient of EFAD. Overall, these results suggest that the EFAD is a good natural source of biological compounds that counteract hyperglycemic neuronal defects.

An Effective Transcranial Electric Motor-Evoked Potentials Method in Spinal Dural Arteriovenous Fistula Ligation Surgery (척수경막동정맥루 결찰술에서의 효과적인 경두개운동유발전위 검사방법)

  • Jang, Min Hwan;Lee, In Seok;Lim, Sung Hyuk
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.53 no.2
    • /
    • pp.193-198
    • /
    • 2021
  • The purpose of spinal dural arteriovenous fistula (SDAVF) ligation is to prevent neurological injury and the poor blood supply through ligation of arteriovenous fistula. Therefore, intraoperative neurophysiological monitoring (INM) is required via multimodal neurological examination for minimizing the side effects after surgery based on the patient's symptoms. Transcranial electric motor-evoked potentials (TceMEP) help to check the condition of the corticospinal tract. Whenever ligation is performed, TceMEP should be performed every minute to check for abnormalities. However, an examiner's lack of knowledge about the operation procedure and examination and also poor communication between the examiner and surgeon can cause incorrect timing of the stimulation of TceMEP that interferes with the procedure and causes side effects such as paralysis and motor weakness. As a result of this SDAVF ligation survey, it is believed that for proper INM, case reports will be needed along with further research and the examiner will also have to work closely with the surgeon to minimize neurological damage to patients.