• Title/Summary/Keyword: 농업로봇

Search Result 130, Processing Time 0.02 seconds

Improvements to a Modular Agricultural Robot Platform for Field Work (밭 노지 작업을 위한 모듈형 농업 로봇 플랫폼 개선에 관한 연구)

  • Kim, Dongwoo;Hong, Hyunggil;Cho, Yongjun;Yun, Haeyong;Oh, Jangseok;Gang, Minsu;Park, Huichang;Seo, Kabho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.80-87
    • /
    • 2021
  • Our study introduces an improved modular agricultural platform to provide convenience to agricultural workers. We upgrade the platform design in three parts, namely, by adding a 458 pattern tire, electricity control, and four-wheel steering function, to improve the platform performance. Results showed that the upgrades enhanced the platform performance and reduced its overall weight as compared with the existing platform. To demonstrate the performance of our improved platform, we conducted five types of experiments with respect to the climbing angle, variable width, attitude control, speed, and obstacle passing.

Development of Autonomous Steering Platforms for Upland Furrow (노지 밭고랑 환경 적용을 위한 자율조향 플랫폼 개발)

  • Cho, Yongjun;Yun, Haeyong;Hong, Hyunggil;Oh, Jangseok;Park, Hui Chang;Kang, Minsu;Park, Kwanhyung;Seo, Kabho;Kim, Sunduck;Lee, Youngtae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.9
    • /
    • pp.70-75
    • /
    • 2021
  • We developed a platform that was capable of autonomous steering in a furrow environment. It was developed to autonomously control steering by recognizing the furrow using a laser distance, three-axis tilt, and temperature sensor. The performance evaluation indicated that the autonomous steering success rate was 99.17%, and it was possible to climb up to 5° on the slope. The usage time was approximately 40 h, and the maximum speed was 6.7 km/h.

A Study on Furrow Autonomous Steering using Furrow Recognition Sensor Module (고랑인식 센서 모듈을 이용한 밭고랑 자율조향에 대한 연구)

  • Cho, Yongjun;Park, Kwanhyung;Yun, Haeyong;Hong, Hyunggil;Oh, Jangseok;Kang, Minsu;Jang, Sunho;Seo, Kabho;Lee, Youngtae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.92-97
    • /
    • 2022
  • In this paper, as a research on autonomous steering for agriculture, a sensor module for furrow recognition was developed through a low-cost distance sensor combination. The developed sensor module was applied to the vehicle, and when driving in a furrow curve, the autonomous steering success rate was 100% at a curvature of 20 m or more, and 70% at a curvature of 15 m or less. The self-steering success rate according to the ground condition showed a 100% success rate regardless of soil, weeds, or mulching film.

미래 농업을 위한 바이오시스템공학

  • Ju, Chan-Yeong;Park, Seon-Ho;Park, Yeong-Ju;Lee, Do-Hyeon;Kim, Jang-Ho;Son, Hyeong-Il
    • ICROS
    • /
    • v.22 no.3
    • /
    • pp.43-57
    • /
    • 2016
  • 미래 농업은 생산, 유통, 소비 등의 모든 시스템이 연결되고 여기에 ICT 로봇 나노(NT) 바이오(BT)의 첨단기술을 결합해 자율적으로 운영되는 신성장동력 산업으로 진화될 것으로 예상된다. 이에 따라 농업은 정밀농업기술, 자동화 및 농업용 스마트 로봇 등의 다양한 공학기술의 접목과 함께 발달되고 있다. 최근에는 농업에 적용이 어려울 것이라고 예상되던 마이크로 나노 바이오공학의 접목도 시도되고 있으며 이에 따른 미래 농업의 전망은 아주 밝다고 볼 수 있다. 본 논문에서는 미래 농업을 위한 바이오시스템공학에 대해 자동화, 로봇화, 마이크로 나노농업공학 및 농업생명가공공학을 중점으로 주요기술들을 설명하고 국내 외 연구개발 동향을 살펴보고자 한다.

Leg Structure based on Counterbalance Mechanism for Environmental Adaptive Robot (환경 적응형 로봇의 기계식 중력보상 기반 다리 구조)

  • Park, Hui-Chang;Oh, Jang-Seok;Cho, Yong-Jun;Yun, Hae-Yong;Hong, Hyung-Gil;Kang, Min-Su;Park, Kwan-Hyung;Song, Jae-Bok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.9-18
    • /
    • 2022
  • As the COVID-19 continues, the demand for robotic technology that can be applied in face-to-face tasks such as delivery and transportation, is increasing. Although these technologies have been developed and applied in various industries, the robots can only be operated in a tidy indoor environment and have limitations in terms of payload. To overcome these problems, we developed a 2 degree of freedom(DOF) environmental adaptive robot leg with a double 1-DOF counterbalance mechanism (CBM) based on wire roller. The double 1-DOF CBM is applied to the two revolute joints of the proposed robot leg to compensate for the weight of the mobile robot platform and part of the payload. In addition, the link of the robot leg is designed in a parallelogram structure based on a belt pulley to enable efficient control of the mobile platform. In this study, we propose the principle and structure of the CBM that is suitable for the robot leg, and design of the counterbalance robot leg module for the environment-adaptive control. Further, we verify the performance of the proposed counterbalance robot leg by using dynamic simulations and experiments.

Development of Automatic Module Changer for Farmbot (팜봇과 연동하는 작업기 자동체결 장치 개발)

  • Kwon, Junhyuk;Lee, Myungho;Cho, Hyungho;Hong, Hyunggil;Cho, Yongjun;Yun, Haeyong;Oh, Jangseok;Park, Huichang;Gang, Minsu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.12
    • /
    • pp.30-35
    • /
    • 2021
  • In this study, we developed an automatic module changer for agricultural implements for using in unmanned agricultural robots. An automatic module changer is attached by lowering from the top to bottom of the implements and fixing the four fastener bars attached to the implements in combination. The lift function was implemented using seesaw-type structures to keep the engagement point constant when the automatic module changer climbs and descends, and the switching function of the automatic module changer was implemented using the link device in the cam structure. We developed an algorithm to check the presence of attachment and opening/closing of the workpiece using limit switches and verified the performance through combination assessment and weight lift test to assess whether the combination was within the error range.

Design of the Proprioceptive Actuator Capable of Simultaneous Bidirectional Driving (양방향 동시 구동이 가능한 고유수용성 구동기의 설계)

  • Park, Hui-Chang;Cho, Yong-Jun;Yun, Hae-Yong;Oh, Jang-Seok;Hong, Hyung-Gil;Kang, Min-Su;Park, Kwan-Hyung;Song, Jae-Bok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.98-104
    • /
    • 2022
  • Because a robot actuator is directly affected by the external force of the robot and accounts for the largest portion of the robot system weight, developing an optimized actuator suitable for each characteristic of the robot system is essential. Although there have been many developments and studies related to robot actuators in various industrial fields, lightweight and compact actuator designs that can control force are still lacking. In this study, a novel actuator module was developed, and its performance was verified experimentally. The structure and control of various robot systems can be optimized by utilizing the proposed actuator. It can be used for various tasks by sensing external force and through feedback control.

The Study on Evaluation Method of Pest Control Robot Requirements for Smart Greenhouse (스마트 온실 방제 로봇의 요구조건을 고려한 평가 방법 연구)

  • Kim, Kyoung-Chul;Ryuh, Beom-Sahng;Lee, Siyoung;Kim, Gookhwan;Lee, Meonghun;Hong, Young-ki;Kim, Hyunjong;Yu, Byeong-Kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.318-325
    • /
    • 2019
  • Recently, research and development on agricultural robots have been on the rise as the interest in smart farming has increased. Robots used in smart greenhouses should be taken into account with the working characteristics and growing environment. This study examined cleaning robots developed through the environmental analysis of smart greenhouses. This study assessed the evaluation method considering the requirements of the pest control robot applicable to the smart greenhouse. The performance and quality assessment criteria were established to conduct tests through the requirements of robots. The required functions and goals of the pest control robot were derived by referring to the robot-related standards. A driving and working ability test was conducted to assess the performance of the robot. The driving test was conducted on the driving performance of the robot and the work capability was tested on the pest control performance. In addition, a durability test was conducted to assess the quality of the robot. The required factors for smart greenhouse robots were derived from the test results. The study results are expected be a standard for an evaluation of a variety of robots for applications to smart greenhouses.

Object Recognition Technology using LiDAR Sensor for Obstacle Detection of Agricultural Autonomous Robot (LiDAR 센서 활용 객체 인식기술이 적용된 농업용 자율주행 이송 로봇 개발)

  • Kim, Jong-Sil;Ju, Yeong-Tae;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.565-570
    • /
    • 2021
  • Agriculture in South Korea is losing productivity due to the lack of manpower as aging population increases. To overcome this, the agricultural robot market is growing rapidly, and research is being conducted on remote control and autonomous driving of agricultural robots. This work designs the appearance and structure of agricultural robots and implements the devices and control systems for driving. By utilizing and optimizing LiDAR sensors, we applied object recognition technology, which is an essential function for autonomous driving. This can reduce labor costs and improve productivity of transportation tasks that require the most labor in agriculture.

The convergence of high technology and agriculture (첨단 기술과 농업의 융합)

  • Park, Joo Suc;Moon, Junghoon
    • Agribusiness and Information Management
    • /
    • v.1 no.2
    • /
    • pp.119-130
    • /
    • 2009
  • 심각한 기후 변화와 증가하는 인구에 따른 전 세계적인 식량 부족 현상으로 농업 분야에서의 자동화는 점점 중요성이 커지고 있다. 특히 우리나라와 같이 농업 인구의 고령화, 해외 수입 농산품과의 가격 경쟁력 향상과 고 생산성 요구가 거센 환경에서는 농업의 자동화는 다가오는 미래가 아니라 반드시 적용하고 해결해야만 하는 필수 요소가 되었다. 농업은 제한된 공간에서 저 노동력으로 최대의 생산성을 얻기 위해서 다양한 최신 학문 영역과의 융합을 시도하고 있다. 이 문서에서는 이에 관련하여 농업과 로봇(자동화) 산업의 결합에 중점을 두고 농업용 로봇과 식물공장의 주요 기술을 소개하고 사례를 설명하는 것을 목적으로 한다.

  • PDF