• Title/Summary/Keyword: 녹피율

Search Result 12, Processing Time 0.02 seconds

Acquisition of Evidential Information to Control Total Volume in accordance with Degradation Trends of Green Space (녹피율 훼손추세 평가를 통한 총량규제 근거자료 학보방안)

  • Um, Jung-Sup
    • Spatial Information Research
    • /
    • v.14 no.3 s.38
    • /
    • pp.299-319
    • /
    • 2006
  • This research is primarily intended to investigate the potential of estimating green space threshold in terms of total volume control using degradation trends of green space derived from remote sensing and GIS. An empirical study for a case study site was conducted to demonstrate how a standard remote sensing and GIS technology can be used to assist in estimating the total control volume for green space in terms of area-wide information, spatial resolution and change detection etc. Guidelines for a replicable methodology are presented to provide a strong theoretical basis for the standardization of factors involved in the estimation of the green space threshold; the meaningful definition of land mosaic, redefinition of degradation trends for green space. It was demonstrated that the degradation trends of green space could be used effectively as an indicator to restrict further development of the sites since the visual maps generated from remote sensing and GIS can present area-wide visual evidences by permanent record. It is anticipated that this research output could be used as a valuable reference to support more scientific and objective decision-making in introducing aggregate control of green space.

  • PDF

Derivation of Green Coverage Ratio Based on Deep Learning Using MAV and UAV Aerial Images (유·무인 항공영상을 이용한 심층학습 기반 녹피율 산정)

  • Han, Seungyeon;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1757-1766
    • /
    • 2021
  • The green coverage ratio is the ratio of the land area to green coverage area, and it is used as a practical urban greening index. The green coverage ratio is calculated based on the land cover map, but low spatial resolution and inconsistent production cycle of land cover map make it difficult to calculate the correct green coverage area and analyze the precise green coverage. Therefore, this study proposes a new method to calculate green coverage area using aerial images and deep neural networks. Green coverage ratio can be quickly calculated using manned aerial images acquired by local governments, but precise analysis is difficult because components of image such as acquisition date, resolution, and sensors cannot be selected and modified. This limitation can be supplemented by using an unmanned aerial vehicle that can mount various sensors and acquire high-resolution images due to low-altitude flight. In this study, we proposed a method to calculate green coverage ratio from manned or unmanned aerial images, and experimentally verified the proposed method. Aerial images enable precise analysis by high resolution and relatively constant cycles, and deep learning can automatically detect green coverage area in aerial images. Local governments acquire manned aerial images for various purposes every year and we can utilize them to calculate green coverage ratio quickly. However, acquired manned aerial images may be difficult to accurately analyze because details such as acquisition date, resolution, and sensors cannot be selected. These limitations can be supplemented by using unmanned aerial vehicles that can mount various sensors and acquire high-resolution images due to low-altitude flight. Accordingly, the green coverage ratio was calculated from the two aerial images, and as a result, it could be calculated with high accuracy from all green types. However, the green coverage ratio calculated from manned aerial images had limitations in complex environments. The unmanned aerial images used to compensate for this were able to calculate a high accuracy of green coverage ratio even in complex environments, and more precise green area detection was possible through additional band images. In the future, it is expected that the rust rate can be calculated effectively by using the newly acquired unmanned aerial imagery supplementary to the existing manned aerial imagery.

A Study of Factors Influencing of Temperature according to the Land Cover and Planting Structure in the City Park - A Case Study of Central Park in Bundang-gu, Seongnam - (도시공원의 토지피복 및 식재구조에 따른 온도 영향요인 규명 연구 - 성남시 분당구 중앙공원을 사례로 -)

  • Ki, Kyong-Seok;Han, Bong-Ho;Hur, Ji-Yeon
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.5
    • /
    • pp.801-811
    • /
    • 2012
  • The purpose of this study is to find out how land cover and planting of an urban park influence temperature. Field research on the land cover and planting status was conducted for Bundang Central Park in Sungnam-si. 30 study plots in the site were selected to closely analyze land cover type and planting structure. The temperature was measured 10 times for each plot. Land coverage type, planting type, planting layer structure and green space area (the ratio of green coverage, GVZ) were chosen as factors impacting temperature and statistics were analyzed for the actual temperature measured. Analysis on how the land coverage type influences temperature showed that planting site had a low temperature and that grassland and paved land had a high temperature. When it comes to planting type, the temperature at the land planted with conifers and broad-leaved trees was low, while the temperature at grassland and paved land was high. With regard to planting layer structure, canopy and canopy-underplanting type showed low temperature, while grassland and paved land showed high temperature. An analysis on the relation between green space area and temperature found out that both ratio of green coverage and GVZ had a high level of negative correlation with the temperature measured. According to regression model of green space area and the temperature measured, for every 1% increase in the ratio of green coverage, temperature is expected to lower by $0.002^{\circ}C$. Also, for every $1m^3/m^2$ increase in GVZ, temperature is expected to go down by $0.122^{\circ}C$.

A Study on the Calculation Methods on the Ratio of Green Coverage Using Satellite Images and Land Cover Maps (위성영상과 토지피복도를 활용한 녹피율 산정방법 연구)

  • Moon, Chang-Soon;Shim, Joon-Young;Kim, Sang-Bum;Lee, Shi-Young
    • Journal of Korean Society of Rural Planning
    • /
    • v.16 no.4
    • /
    • pp.53-60
    • /
    • 2010
  • This study aims at suggesting the attributes and limitations of each methods through the evaluation of the verified analysis results, so that it will be possible to select an efficient method that may be applied to assess the green coverage ratio. Green coverage areas of each sites subject to this study were assessed utilizing the following four methods. First, assessment of green coverage area through direct planimetry of satellite images. Second, assessment of green coverage area using land cover map. Third, assessment of green coverage area utilizing the band value in satellite images. Forth, assessment of green coverage area using and land cover map and reference materials. For this study, four urban zones of the City of Seosan in Chungcheongnam-do. As a result, this study show that the best calculation method is the one that combines the merits of first and second methods. This method is expected to be suitable for application in research sites of middle size and above. It is also deemed that it will be possible to apply this method in researches of wide area, such as setting up master plans for parks and green zones established by each local self-government organizations.

Analyses on Comparison of UTCI, PMV, WBGT between Playground and Green Space in School (학교 운동장과 녹지공간의 UTCI, PMV, WBGT 비교 분석)

  • Yoon, Young-Han;Park, Seung-Hwan;Kim, Won-Tae;Kim, Jeong-Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.1
    • /
    • pp.80-89
    • /
    • 2014
  • This study of the school's outdoor space for relaxing and activity of the two most numerous students, high heat and low heat with a green space, playground targets of thermal comfort indicators UTCI, PMV, WBGT using the thermal comfort students feeling compare the analyzed. The destination of this study, school facilities of Nam-gu, Namdong- gu, Incheon were studied and the investigation period was conducted from July to August. List of measurement, in the case of thermal comfort indicators, UTCI, PMV, WBGT was measured in the case of green, ratio of green coverage and GVZ was measured. GVZ analysis were as follows: A school ($4.71m^3/m^2$) B school ($3.34m^3/m^2$) C school ($0.38m^3/m^2$). Comparative analysis of the results of thermal comfort indicators by schools, UTCI was Green space $26.15{\sim}31.38^{\circ}C$ and playground $40.66{\sim}42.94^{\circ}C$, PMV values were 1.76 to 2.66 as a green space. WBGT was Green space $26.15{\sim}31.38^{\circ}C$, playground $31.67{\sim}34.53^{\circ}C$. Comparative analysis of the results of thermal comfort indicators UTCI, PMV, WBGT all A school, B school, C school, on the green space was comfortable levels more than playground. The results of the school type thermal comfort and green correlation analysis of thermal comfort UTCI, PMV, WBGT all solar radiation, globe temperature, and a positive correlation shown solar radiation, globe temperature is not comfortable, the higher was considered. UTCI, PMV, WBGT of thermal comfort indicator all ratio of green coverage, GVZ and negative correlation appears ratio of green coverage, GVZ was increased due to the lowering of the value of thermal comfort indicators was considered to be comfortable.

The Suggestion for Classification of Biotope Type for Nationwide Application (전국적 적용을 위한 비오톱유형분류 제안)

  • Choi, Il-Ki;Oh, Choong-Hyeon;Lee, Eun-Heui
    • Korean Journal of Environment and Ecology
    • /
    • v.22 no.6
    • /
    • pp.666-678
    • /
    • 2008
  • The needs for drawing up of biotope map is rapidly spreaded over each local government recently in Korea, according as enhancing of interest about biotope, which is recognized to practical instrument for concretely being able to considering natural environment and ecosystem on all sorts of development plan. However, there are not yet the standard suggestion on biotope types and classification systems and biotope classification criteria. Therefore, each other methodologies are applied to each of local autonomies. First, under such critical mind the biotope types and classification systems were drafted by a review on biotope types, biotope classification systems, and biotope classification criteria of the preceded case studies until now at the inside and outside of the country. And then the purpose of this study is to derive biotope types and biotope classification systems applicable to the whole Korean region through continual feed back such as field surveys in selected representative areas and consultations. As a result of reviewing the case examples, first, the biotope classification systems were mixed two steps system with three steps system and those were composed mostly of the structure of two steps: large and small. Second, land-use, soil pavement ratio, green cover ratio, and vegetation usually were applied to the biotope classification criteria. This study suggests that the biotope classification system is consisted of four steps system: large(biotope class), medium(biotope group), small(biotope type) and detail(sub-biotope type), and the biotope types are classified into 13 types of large step, 45 types of medium step and 127 types of small step. However, this study suggests that the new biotope types on small step or detail step should be continually supplemented with the foundation of classification system proposed in this study because the biotope type classification should consider regional characteristics.

Development and Application of the Assessment Method of No Net Loss of Greenness for Urban Ecosystem Health Improvement (도시생태계 건전성 증진을 위한 녹지총량 평가법 개발과 적용)

  • Kim, Seung-Hyun;Kong, Hak-Yang;Kim, Tae-Kyu
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.4
    • /
    • pp.311-316
    • /
    • 2015
  • This study defined and classified no-net-loss-of-greenness (NNLG) based on the law, and then assessed the NNLG index by metropolitan cities and provinces in Korea after estimating NNLG evaluation indicators for the introduction of NNLG for health improvement of urban ecosystems. The results are as follows. First, NNLG was the comprehensive meaning that was included in the greenbelt and park greenbelt and the green area which was defined by the Act on Urban Parks, Greenbelts, etc. and the National Land Planning and Utilization Act respectively. Second, NNLG was classified as a park greenbelt which was included urban parks and greenbelts such as buffer greenbelts, scenic greenbelts, and connecting greenbelts, green areas which was included in green conservation areas, green production areas, green natural areas, and green coverage which is included forests, grasslands, and wetlands that were occupied by vegetation such as trees, shrubs, and plants. Third, NNLG index by cities and provinces was assessed based on the estimation of NNLG evaluation indicators, which included parks and greenbelt areas per capita, green areas per capita, green coverage per capita, ratio of parks and greenbelts, ratio of green areas, and ratio of green coverage. As a result, Sejong city got the highest point of NNLG index and Seoul and Daegu got lowest points of NNLG index among metropolitan cities in Korea. Chungbuk got the highest point of NNLG index and Kyonggi and Jeju got lowest points of NNLG index among provinces in Korea.

Improvement on Street Greenery for the Landscape Specialization and Increase of Green Volume on the Streets of Seoul (서울시 가로경관 특성화 및 녹량증진을 위한 가로녹지 개선 방안)

  • Byon, Hye-Ok;Han, Bong-Ho;Ki, Kyong-Seok;Jung, Jin-Mi
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.35-46
    • /
    • 2012
  • This study attempts to specifically analyze green volume and scenery characteristics by classifying the streets in Seoul and suggest improvements accordingly. The subject streets for research were limited to those that have high occupancy ratio and are wide enough to have a big potential in improving green volume. In terms of green volume and scenery according to the types of streets, Platanus occidentalis and Ginkgo biloba were most common regardless of the street type, and the green ratio was 51.6% in residential areas, 50.4% in commercial areas, and 43.7% in business areas. Apart from the residential area, there was almost no green areas, and the ratio of green coverage was 71.0% in business areas, 64.0% in green areas, 37.3% in residential areas, and 36.2% in commercial areas, while the green volume coefficient was $1.9m^3/m^2$ on average. Based on the study results, it was set as a goal to provide the residential areas with a green community space and flowering trees throughout the year for scenery, and commercial areas with flowering trees and maples to emphasize the stores' image while not interfering with service and walking. For business areas, the goals were to improve green ratio and create streets that suit the urban image, and to set up spaces to provide habitat for wild animals with multi-layer planting and link to surrounding forests.

A Study on the Planning Methods of Community Greenway in Nam-Gu, Incheon (인천광역시 남구 커뮤니티형 그린웨이 조성방안 연구)

  • Park, Suk-Hyeon;Han, Bong-Ho;Choi, Jin-Woo;Choi, Tae-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.43 no.1
    • /
    • pp.16-28
    • /
    • 2015
  • This study is suggested to enlarge the green area and to connect and improve the present green areas by deriving the lines of community greenway using living areas and community spaces close to the life of residence in Nam-gu. The purpose of this paper is to suggest the method of establishing greenway for the formation of community in which the residence can grow the community spirit and love their living space much more. Land-use status, green coverage ratio, and impermeability paving ratio are investigated. The community facilities are classified. The highest is educational facility, which is 7.7%, the green facility is 1.9% and the total area of community facilities which is 21.4%. The total area of Nam-gu is divided into 31 zones in total according to the administrative districts, the mail roads and reserved land of railroad and urban development. The total 20 lines of community greenway lines are chosen and the total length of lines is 18.2km. Finally, the characteristics of community greenway lines are analysed, the characteristics of community greenway lines are overall estimated according to the land-use, the street environment and the community facility. The classification system of community greenway is established on the basis on the function and purpose of greenway, the present status of land-use and the type of community facility. Based on the field investigation, the 6 greenway types are suggested considering the interconnection. The method of establishment of community greenway is suggested according to the principle of function and purpose, the principle of land-use and the principle of use of the facilities. Furthermore, the planting methods suitable to each greenway type are suggested in the building planting case of wall planting, roof planting, veranda planting, etc., and in the complex planting of parks, schools, roads, parking lots and other small areas.

Change in Growth of Chrysanthemum zawadskii var. coreanum as Effected by Different Green Roof System under Rainfed Conditions (빗물활용 옥상녹화 식재지반에 따른 한라구절초의 생육 변화)

  • Ju, Jin-Hee;Kim, Won-Tae;Yoon, Yong-Han
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.39 no.1
    • /
    • pp.117-123
    • /
    • 2011
  • This study aims to suggest a suitable soil thickness and soil mixture ratio of a green roof system by verifying the growth of Chrysanthemum zawadskii var. coreanum as affected by different green roof systems using rainwater. The experimental planting grounds were made with different soil thicknesses(15cm, 25cm) and soil mixing ratios (SL, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$, $P_4P_4L_2$) and with excellent drought tolerance. Ornamental value Chrysanthemum zawadskii var. coreanum was planted. The change in plant height, green coverage ratio, chlorophyll content, fresh weight, dry weight, and dry T/R ratio of Chrysanthemum zawadskii var. coreanum were investigated from April to October 2009. For 15cm soil thickness, the plant height of Chrysanthemum zawadskii var. coreanum was not significantly different as affected by the soil mixing ratio. However, it was found to be higher in the amended soil mixture, $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ and $P_4P_4L_2$ than in the sandy loam soil, as it was SL overall. For 25cm soil the plant height differences were in order to SL < $P_7P_1L_2$, $P_6P_2L_2$, $P_5P_3L_2$ < $P_4P_4L_2$. The green coverage ratio was observed not to be different by soil mixing ratio with soil thickness of 15cm, but, the lowest green coverage ratio in the SL. In the 25cm soil thickness, the green coverage ratio was 86-89% with a good coverage rate overall. The change in chlorophyll contents with 15cm soil thickness was found to be the highest in the SL treatment and the lowest in the $P_5P_3L_2$ treatment. For 25cm thickness, the highest value was in the $P_4P_4L_2$ and SL, and the lowest in the$P_7P_1L_2$. Fresh weight and dry weight were larger in soil with 25cm thickness. Therefore, the growth of Chrysanthemum zawadskii var. coreanum as affected by a different green roof system for using rainwater was higher in soil with 25cm thickness than 15cm, and in PPL amended soil than in sandy loam.