• Title/Summary/Keyword: 녹염석

Search Result 43, Processing Time 0.02 seconds

석류석과 녹염석간의 철-알루미늄 교환에 관한 실험암석학적 연구

  • 김형식;김진섭;김기영;이설경;신의철;권용완
    • The Journal of the Petrological Society of Korea
    • /
    • v.3 no.3
    • /
    • pp.185-195
    • /
    • 1994
  • An experimental study of iron-aluminium partitioning between synthetic garnet and synthetic epidote was carried out, as equilibrium was maintained in the exchange reaction expressed as follows : $Ca_3Fe_2Si_3O_12\+\2\Ca_2Al_2AlSi_3O_12$(0H) = $Ca_3Al_2Si_3O_12\+\Ca_2Al_2FeSi_3O_12$(0H) Temperature has a pronounced effect on the distribution of Fe and A1 between the minerals. However, the pressure effect is not so drastic as in the exchange reaction. With increasing temperature, $Fe^{+3}$ becomes redistributed from garnet into epidote, whereas A1 becomes redistributed from epidote into garnet. This is in line with the general principle of phase correspondence, as the temperature increases the more electropositive metal aluminium redistributes from epidote into garnet. The agreement between the experimental results of this study and the natural samples suggests that $K_D=X^{Ep}_{Fe}/X^{Gr}_{Fe}$ may be a useful geothermometer for metamorphic rocks containing garnet and epidote that are close to binary Fe-A1 compounds.

  • PDF

Mineralogical Characteristics and Formation Processes of Zonal Textures in Hydrothermal Epidote from the Bobae Sericite Deposit (보배 견문모 광상에서 산출하는 녹염석의 누대구조의 특징과 발달과정)

  • 추창오
    • Economic and Environmental Geology
    • /
    • v.34 no.5
    • /
    • pp.437-446
    • /
    • 2001
  • Zoned epidotes formed by the propylitic alteration of the Bobae sericite deposit in western Pusan show complex compositional zoning patterns, such as multiple growth zoning, oscillatory zoning, patchy zoning and irregular zoning. The complex zoned epidote, in general, shows AI-rich cores and Fe-rich rims. Pistacite component (Ps) in the epidote ranges from 18.5 to 74.3 mot.%. Remnant textures in multiple growth zoning indicate that the earlier zone was partially resorbed prior to growth of later one. Multiple growth zoning and oscillatory zoning suggest that hydrothermal system underwent rapid changes and fluctuations in fluid chemistry, redox condition, or temperature.

  • PDF

충주부근 활석 광상의 성인

  • 김형식;조동수
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.95-103
    • /
    • 1993
  • The geology of the talc ore deposits in the Chungju area consists of the Kyemyeongsan Formation, the Munjuri Formation, the Daehyangsan Quartzite, the Hyangsanni Dolomite, and the basic rocks of the Ogcheon belt. The talc ore occurs in the Hyangsanni Dolomite near the Daehyangsan Quartzite The mineral assemblages in the Hyangsanni Dolomite are \circled1calcite-tremolite-talc-quartz, \circled2calcite-talc-quartz, \circled3tremolite-calcite-dolomite, and \circled4calcite-dolomite-phlogopite-chlorite. Talc has almost the ideal composition($X_{Mg}$=Mg/(Fe+Mg)=0.98). Talc was formed in siliceous dolomite by the medium-pressure type regional metamorphism. The evidences for contact metamorphism and/or hydrothermal reaction are not clear. The metamorphic grade of the Hyangsanni Dolomite and its adjacent pelitic or basic rocks near the deposits corresponds to epidote-amphibolite facies or greenschist facies based on the, mineral assemblages of \circled1hornblendebiotite-muscovite-epidote-quartz \circled2biotite-chlorite-quartz, and \circled3hornblende-actinolite-plagioclasequartz. The formation of the talc deposits were caused by the following reactions due to greenschist facies metamorphism of siliceous-dolomitic rocks in the Hyansanni Dolomite. (I) 3 dolomite+4 quartz+$H_2O$= talc+ 3 calcite +3 $CO_2$; (11) 3 tremolite+ 2 $H_2O$+ 6 $CO_2$= 5 talc+ 6 calcite + 4 quartz. The minimum temperature of the talc-tremolite-quartz assemblage is about $434^{\circ}C$ from calcite thermometry and the carbon dioxide mole fraction in metamorphic fulid($X_{$CO_2$}$) is about 0.1 at assumed pressure, 3 kbar.

  • PDF

Metamorphism of the amphibolites in the Hwanggangri area, the northeastern region of Ogcheon metamorphic belt, Korea (옥천변성대 북동부 황강리 지역내 앰피볼라이트의 변성작용)

  • 유영복;김형식;권용완;박종길
    • The Journal of the Petrological Society of Korea
    • /
    • v.10 no.2
    • /
    • pp.57-81
    • /
    • 2001
  • In the amphibolites of the Hwanggangri area, three metamorphic zones are established like hornblende-actinolite zone (H-AZ), hornblende zone (HZ) and diopside zone (DZ) by the main mineral assemblages. Hornblende zone and hornblende-actinolite zone develope away from the diopside zone that experienced the highest thermal effect. Thus, this pattern identifies the decreasing metamorphic grade of the contact metamorphism with increasing distance from the granitic pluton. The mineral assemblages of this rock are classified into six representative groups such as $\circled1$ actinolite+plagioclase+chlorite, $\circled2$ actinolite+hornblende+plagioclase+chlorite$\pm$epidote$\pm$biotite, $\circled3$ actinolite+hornblende+plagioclass$\pm$biotite$\pm$epidote, $\circled4$ hornblende+plagioclase$\pm$biotite$\pm$chlorite, $\circled5$ hornblende+plagioclase+diopside+actinolite$\pm$epidote$\pm$chlorite, $\circled6$hornblende+plagioclase+diopside$\pm$biotite$\pm$epidote. Two metamorphic events m recognized in the amphibolites of the study area that the first metamorphism is the regional metamorphism dominantly occurred in the whole Ogcheon metamorphic belt and it gave rise to the growth of actinolite at the core or center of the amphibole grains of coarse and medium size. Its metamorphic grade ranges from the greenschist facies to epidote-amphibolite facies. The second metamorphism overlapped is the contact metamorphism caused by the adjacent granitic pluton, and its metamorphic grade is thought to reach to the low pressure part of upper amphibolite facies. According to the calculation by TWEEQU thermobarometry and amphibole-plagioclase thermometry, the metamorphic temperature of initial regional metamorphism is $439-537^{\circ}C$ under pressure of 4.6-7.3 kb and its peak temperature and pressure are considered to reach to the range of 492-537 and 5.2-7.3 kb. And the temperature range of contact metamorphism occurred by intrusion of cretaceous granitic body, is $588-739^{\circ}C$ under pressure of 2.6-5.2 kb and its peak temperature and pressure are estimated as having the range of $697-739^{\circ}C$ and 3.8-5.2 kb that this amphibolites are estimated to pass through the metamorphic evolution of both the rise of temperature and the drop of pressure.

  • PDF

Ore Geology of Skarn Ore Bodies in the Kasihan Area, East Java, Indonesia (인도네시아 까시한지역 스카른광체의 광상학적 특성)

  • Han, Jin-Kyun;Choi, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.45 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Copper-zinc-bearing skarns of the Kasihan area developed at limestone layers in the sedimentary facies of the Late Oligocene Arjosari Formation. The skarns consist mainly of fine-grained, massive clinopyroxene-garnet, garnet, garnet-epidote, and epidote skarns. Most copper and zinc(-lead) ore mineralization occur in the clinopyroxene-garnet and garnetepidote skarn, respectively. Clinopyroxene occurs as a continuous solid solution of diopside and hedenbergite (from nearly pure diopside up to ${\approx}34$ mole percent hedenbergite), with a maximum 28.2 mole percent johannsenite component. The early and late pyroxenes of Kasihan skarns are diopsidic and salitic, respectively. They fall in the fields typical Cu- and Zn-dominated skarns, respectively. Garnet displays a relatively wide range of solid solution between grossular and andradite with up to ${\approx}2.0$ weight percent MnO. Garnet in early pyroxene-garnet skarn ranges from 49.1 to 91.5 mole percent grossular (mainly ${\geq}78$ mole % grossular). Garnets in late garnet and garnet-epidote skarns range from 2.8 to 91.4 mole percent grossular (mainly ${\geq}70$ mole % for garnet skarn). Epidote compositions indicate solid solutions of clinozoisite and pistacite varying from 65.8 to 76.2 mole percent clinozoisite. Phase equilibria indicate that skarn evolution was the result of interaction of water-rich fluids ($X_{CO_2}{\leq}0.1$) with original lithologies at ${\approx}0.5$ kb with declining temperature (early clinopyroxene-garnet and garnet skarn, ${\approx}450$ to $370^{\circ}C$; late garnet-epidote and epidote skarn, ${\approx}370$ to $300^{\circ}C$).

Mineralogical Characteristics of Fracture-Filling Minerals from the Deep Borehole in the Yuseong Area for the Radioactive Waste Disposal Project (방사성폐기물처분연구를 위한 유성지역 화강암내 심부 시추공 단열충전광물의 광물학적 특성)

  • 김건영;고용권;배대석;김천수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.99-114
    • /
    • 2004
  • Mineralogical characteristics of fracture-filling minerals from deep borehole in the Yuseong area were studied for the radioactive waste disposal project. There are many fracture zones in the deep drill holes of the Yuseong granite, which was locally affected by the hydrothermal alteration. According to the results of hole rock analysis of drill core samples, $SiO_2$ contents are distinctly decreased, whereas $Al_2$$O_3$ and CaO contents and L.O.I. values are increased in the -90 m∼-130 m and -230 m∼-250 m zone, which is related to the formations of filling minerals. Fracture-filling minerals mainly consist of zeolite minerals (laumontite and heulandite), calcite, illite ($2M_1$ and 1Md polytypes), chlorite, epidote and kaolinite. The relative frequency of occurrence among the fracture-filling minerals is calcite zeolite mineral > illite > epidote chlorite kaolinite. Judging from the SEM observation and EPMA analysis, there is no systematic change in the texture and chemical composition of the fracture-filling minerals with depth. In the study area, low temperature hydrothermal alteration was overlapped with water-rock interactions for a long geological time through the fracture zone developed in the granite body. Therefore the further study on the origin and paragenesis of the fracture-filling minerals are required.

Skarn Formation in Metamorphic Rocks of the Chungju Mine Area (충주광산 지역 계명산층의 텅스텐 스카른화작용)

  • Kim, Gun-Soo;Park, Maeng-Eon
    • Economic and Environmental Geology
    • /
    • v.28 no.3
    • /
    • pp.185-197
    • /
    • 1995
  • Tungsten skarns in the Chungju mine which consists mainly of strata-bound type iron ore deposits are found in the vicinity of the contact between the age-unknown Kyemeongsan Formation and granitic rock intrusions of Mesozoic age($134{\pm}2Ma$). Tungsten skarns were formed extensively from alumina and silica-rich schistose rocks by the introduction of calcium and iron from hydrothermal solution. The skarns comprise a metasomatic column and are subdivided into four facies; garnet facies, wollastonite facies, epidote facies and chlorite facies. The skarn process in time-evolutional trend can be divided broadly into the four facies in terms of the paragenetic sequence of calc-silicates and their chemical composition. Skarn and ore minerals were formed in the following sequence; (1) garnet facies, adjacent to biotite granite, containing mainly garnet(>Ad96) and magnetite, (2) wollastonite facies containing mainly wollastonite and garnet(Ad95~60), (3) epidote facies, containing mainly epidote(Ps35~31), quartz, andradite-grossular(Ad63~50), and scheelite, (4) chlorite facies, adjacent to and replacing schist, containing mainly chrolite, muscovite, quartz, calcite, epidote(Ps31~25), hematite and sulfides. The mineral assemblage and mineral compositions. suggest that the chemical potentials of Ca and Fe increased toward the granitic rock, and the component Al, Mg, K, and Si decreased from the host rock to granitic rock. The homogenization temperature and salinity of fluid inclusion in scheelite, quartz and epidote of epidote facies skarn is $300-400^{\circ}C$ and 3-8wt.% eqiv. NaCl, respectively. ${\delta}^{34}S$ values of pyrite and galena associated with chlorite facies skarn is $9.13{\sim}9.51%_{\circ}$ and $5.85{\sim}5.96%_{\circ}$, respectively. The temperature obtained from isotopic com· position of coexisting pyrite-galena is $283{\pm}20^{\circ}C$. Mineral assemblages and fluid inclusion data indicate that skarn formed at low $X_{CO_2}$, approximately 0.01. Temperature of the skarn mineralization are estimated to be in the range of $400^{\circ}C$ to $260^{\circ}C$ and pressure to be 0.5 kbar. The oxygen fugacity($fo_2$) of the skarn mineralization decreased with time. The early skarn facies would have formed at log $fo_2$ values of about -25 to -27, and late skarn facies would have formed at log $fo_2$ values of -28 to -30. The estimated physicochemical condition during skarn formation suggests that the principal causes of scheelite mineralization are reduction of the ore·forming fluid and a decrease in temperature.

  • PDF

문경지역에 분포하는 변성 염기성암과 변성 퇴적암에 대한 백악기 화강암의 열변성작용

  • 오창환;김성원;김종섭
    • The Journal of the Petrological Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.74-94
    • /
    • 1993
  • Metabasites and metapelites in the Mungyong area were intruded by Cretaceous granites with radius of 4-8 km. As the distance from granite body increases, the mineral assemblage of metabasite changes from amphibole + plagioclase through amphibole + plagioclase + epidote to amphibole + plagioclase + epidote + chlorite. The compositional variations of amphibole and plagioclase according to the change of metamorphic grade and bulk rock compositions are very complex. Towards the Mungyong Cretaceous granite body, the mineral assemblage of metapelite changes from chlorite+ muscovite(ch1orite zone) through biotite + chlorite + muscovite(biotite zone) to andalusite+biotite + muscovite${\pm}$chlorite or cordierite+ biotite+ muscovite${\pm}$chlorite(cordierite zone). The estimated metamorphic conditions of cordierite zone are 480~$580^{\circ}C$ 1.5-3.3 kb. The theoretical study on the thermal metamorphism caused by the Cretaceous granite with radius longer than 4 km in the Mungyong area suggests the followings: The degree of metamorphism is mainly determined not by the size of granite body but by the temperature of granite intrusion; The country rocks within 2 km from Cretaceous granite have undergone metamorphism with temperature higher than $500^{\circ}C$, which is consistent with the petrological study in the Mungyong area. Mungyong Cretaceous granite caused a low P/T thermal metamorphism to the country rocks; the amphibolite facies metamorphism to the country rocks within 1-2 km from the granite body and the epidote-amphibolite and greenschist facies metamorphism to the country rocks within 2-5 km.

  • PDF

Heavy Mineral Analysis of the Cretaceous Hayang Group Sandstones, Northeastern Gyeongsang Basin (경상분지 북동부 백악기 하양층군 사암의 중광물분석)

  • 이용태;신영식;김상욱;이윤종;고인석
    • The Journal of the Petrological Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.14-23
    • /
    • 1999
  • The northeastern part of the Gyeongsang Basin is widely covered by the Cretaceous Hayang Group (Aptian to Albian). The Hayang Group consists of the IIjig. Hupyeongdong, Jeomgog, and Sagog formations. Heavy mineral analysis was carried out to define the possible source rocks of the Haynag Group snadstones. Heavy minerals separated from IIjig, Hupyeongdong, and Jeomgog sandstones are hematite, ilmenite, leucoxene, magnetite, pyrite, actinolite, andalusite, apatite, biotite, chlorite, epidote, garnet, hornblende, kyanite, monazite, muscovite, rutile, sphene, spinel, staurolite, tourmaline, and zircon. Based on their close association and sensitiveness, the heavy mineral assemblages can be classified into 6 syutes: 1)apatite-green tourmaline-sphene-colorless/yellowish zircon; 2) colorless garnet-epidote-rutile-brown tourmaline; 3) rounded purple zircon-rounded tourmaline-rounded rutile; 4) augite-hornblende-color- less zircon; 5) epidote-garnet-sphene; and 6) blue tourmaline. The possible source rocks corresponding to each assemblage are 1) granitic rocks; 2) metamorphic rocks (schist and gneiss) ; 3) older sedimentary rocks; 4) andesitic rocks; 5) metamorphosed impure limestone; and 6) pegmatite, respectively. Previous paleocurrent data suggest that the sediments of the study area were mainly derived from the northeastern to southeastern directions. Thus, the most possible source areas would be the east extension part of the sobaegsan metamorphic complex to the northeast and the Cheongsong Ridge to the southeast.

  • PDF

Occurence of Zn-Pb Deposits in Danjang-Myeon, Milyang Area (밀양 단장면 일대에 발달하는 아연-연 광화대의 산출특성)

  • Kwak, Ji Young;Kang, Chang Won;Joo, Soo Young;Jeong, Jae Han;Choi, Jin Beom
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.279-292
    • /
    • 2015
  • New occurrences of large-scaled Zn-Pb deposits are recently found in the Danjang-myeon, Milyang. They are skarn-type deposits which replaced the intercalated limestone beds in the Jeonggaksan Formation. This study aims at characterizing occurrences, mineralogy, and chemistry of Zn-Pb ores and skarn minerals. Skarn orebodies are mainly found in 3 areas, named Gukjeon-ri, Gorye-ri, and Gucheon-ri orebodies, where sphalerite found as main ore mineral in 200-300 m in height and amount of galena increases as altitude does. Ores are dark grey to dark green in color and closely related with clinopyroxene zone. They occur with hedenbergite, grossular, actinolite, epidote, and small amounts of axinite, calcite, and quartz. Main ore mineral is sphalerite which includes tiny spotted grains of galena and chalcopyrite and becomes rich in grade in association with clinopyroxene and epidote. FeS contents in sphalerite show relatively wide range between 1.53 and 23.07 mole%, whose contents intend to increase towards biotite granite known as ore-related igneous rocks. CdS contents are in the range of 0.22-0.93 mole%, showing decrease tendency from southwest (Gukjeon-ri) to northeast (Gucheon-ri). Zn-Pb deposits developed in Danjang-myeon reveal decrease in temperature with increase of altitude, leading to gradual changes in compositions of ore and skarn minerals.