DOI QR코드

DOI QR Code

Occurence of Zn-Pb Deposits in Danjang-Myeon, Milyang Area

밀양 단장면 일대에 발달하는 아연-연 광화대의 산출특성

  • Kwak, Ji Young (Department of Geology and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Kang, Chang Won (Department of Geology and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Joo, Soo Young (Department of Geology and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Jeong, Jae Han (Department of Geology and Research Institute of Natural Sciences, Gyeongsang National University) ;
  • Choi, Jin Beom (Department of Geology and Research Institute of Natural Sciences, Gyeongsang National University)
  • 곽지영 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 강창원 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 주수영 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 정재한 (경상대학교 지질과학과 및 기초과학연구소) ;
  • 최진범 (경상대학교 지질과학과 및 기초과학연구소)
  • Received : 2015.09.11
  • Accepted : 2015.09.25
  • Published : 2015.09.30

Abstract

New occurrences of large-scaled Zn-Pb deposits are recently found in the Danjang-myeon, Milyang. They are skarn-type deposits which replaced the intercalated limestone beds in the Jeonggaksan Formation. This study aims at characterizing occurrences, mineralogy, and chemistry of Zn-Pb ores and skarn minerals. Skarn orebodies are mainly found in 3 areas, named Gukjeon-ri, Gorye-ri, and Gucheon-ri orebodies, where sphalerite found as main ore mineral in 200-300 m in height and amount of galena increases as altitude does. Ores are dark grey to dark green in color and closely related with clinopyroxene zone. They occur with hedenbergite, grossular, actinolite, epidote, and small amounts of axinite, calcite, and quartz. Main ore mineral is sphalerite which includes tiny spotted grains of galena and chalcopyrite and becomes rich in grade in association with clinopyroxene and epidote. FeS contents in sphalerite show relatively wide range between 1.53 and 23.07 mole%, whose contents intend to increase towards biotite granite known as ore-related igneous rocks. CdS contents are in the range of 0.22-0.93 mole%, showing decrease tendency from southwest (Gukjeon-ri) to northeast (Gucheon-ri). Zn-Pb deposits developed in Danjang-myeon reveal decrease in temperature with increase of altitude, leading to gradual changes in compositions of ore and skarn minerals.

밀양시 단장면에서 대규모의 아연-연 광화대가 최근 새롭게 발견되었는데 정각산층 내에 협재되어 있는 석회암층을 모암으로 하는 스카른광상이다. 본 연구에서는 야외조사를 통한 광화대의 분포를 파악하고, 광석시료의 암석학적 특징 및 스카른광물과 광석광물의 조성 연구를 통해 이 지역에 발달된 광화대의 특성을 파악하였다. 단장면 일대에 발달하는 광화대는 국전리 광화대, 고례리 광화대 및 구천리 광화대로 크게 3개의 지역에서 산출이 확인되며, 광화대는 주로 약 200-300 m 고도에서는 섬아연석이 주 광석광물을 구성하며, 고도가 높아질수록 방연석의 함량이 많아진다. 광석은 주로 단사 휘석대에 산출되며 암녹색 내지 암회색을 띠며 헤덴버자이트, 그로슐라, 양기석 및 녹염석 등의 스카른광물과 함께 수반되고, 액시나이트, 방해석 및 석영 등이 부성분광물로 산출된다. 광석광물로는 섬아연석과 방연석이 산출되는데 섬아연석은 내부에 황동석 및 방연석을 수반하거나 인접하게 산출하며, 단사휘석 및 녹염석과 함께 산출될 때 부광대를 형성한다. 섬아연석의 FeS의 함량은 1.53-23.07 mole%로 넓은 범위를 보이며, 관계화성암으로 추정되는 흑운모화강암에서 멀어질수록 그 함량이 현저히 낮아진다. CdS의 값은 0.22-0.93 mole% 범위를 보이며, 국전리 지역에서 구천리 지역으로 갈수록 감소하는 경향을 보인다. 이와 같이 밀양 단장면 일대에 발달하는 아연-연 광화대는 국전리 지역에서부터 구천리지역에 이르기까지 광화유체가 지속적으로 진화하면서 섬아연석의 조성도 순차적으로 변하고 온도가 감소하였을 것으로 판단된다.

Keywords

References

  1. Barton, P.B. and Skinner, B.J. (1979) Sulfide Mineral Stabilities in: Geochemistry of Hydrothermal Ore Deposits (H.L. barnes, ed), Wiley-Interscience. New York, 278-403.
  2. Chakrabarti, A.K. (1967) On the trace element geochemistry of Zawar sulphides and its relation to metallogenesis. The Canadian Mineralogist, 9(2), 258-262.
  3. Chang, S.W. (1988) Mineralogy of tungsten ores from Sangdong mine. Ph. D. Thesis, Seoul National University.
  4. Choi, J.B. (1989) Mineralogy of skarns and associated minerals in the Geodo mine, Korea. Ph. D. Thesis, Seoul National Univertisy.
  5. Choi, J.B. and Kim, S.J. (1991) Mineralogy and iron chemistry of garnets and clinopyroxenes in the skarn deposits, the Hambaek geosyncline belt, Korea. Journal of the Mineralogical Society of Korea, 4(2), 119-128.
  6. Choi, S.G. (1993) Compositional variations of sphalerites and their genetic characteristics from gold and/or silver deposits in central Korea. Journal of the Korean Institute of Mining Geology, 26, 135-144 (in Korean with English abstract).
  7. Choi, S.G., Choi, B.K., Ahn, Y.H., and Kim, T.H. (2009) Re-evaluation of genetic environments of zinc-lead deposits to prediet hidden skarn orebody. Economic and Environmental Geology, 42(4), 301-314 (in Korean with English abstract).
  8. Cook, N.J., Ciobanu, C.L Pring, A., Skinner, W., Shimizu, M., Danyushevsky, L., Saini-Eidukat, B., and Melcher, F. (2009) Trace and minor elements in sphalerite: A LA-ICPMS study. Geochimica et Cosmochimica Acta, 73(16), 4761-4791. https://doi.org/10.1016/j.gca.2009.05.045
  9. Fleischer, M. (1955) Minor elements in some sulfide minerals. Economic Geology, 50(970), 1024.
  10. Go, J.S., Choi, S.G., Kim, C.S., Kim, J.W., and Seo, J.E. (2014) Skarn Evolution and Fe-(Cu) Mineralization at the Pocheon deposit, Korea. Economic and Environmental Geology, 47(4), 335-349 (in Korean with English abstract). https://doi.org/10.9719/EEG.2014.47.4.335
  11. Hong, S.H. and Choi, P.Y. (1988) Geological report of the Yucheon sheet (scale 1:50,000). Korea Institute of Energy and Resources.
  12. Jeong, J.I (1986) Ore mineralogy and petrology of zinc-lead silver ores form the Yeonhwa I mine, Republic of Korea. Ph. D. Thesis, Waseda University, Japan.
  13. Kang, M.W., Kim, J.H., and Choi., J.B. (2011) Occurrence of the Nb-Ta ore bodies in pegmatites, Mujoo. Journal of the Mineralogical Society of Korea, 24(2), 133-143 (in Korean with English abstract). https://doi.org/10.9727/jmsk.2011.24.2.133
  14. Kim, C.S, Go, J.S., Choi, S.G., and Kim S.T. (2014) Geology, mineralization, and age of the Pocheon Fe(-Cu) Skarn Deposit, Korea. Economic and Environmental Geology, 47(4), 317-333 (in Korean with English abstract). https://doi.org/10.9719/EEG.2014.47.4.317
  15. Kim, K.B. and Hwang, S.G. (1988) Geological report of the Miryang sheet (scale 1:50,000). Korea Institute of Energy and Resources.
  16. Kim, K.H., Nakai, N., and Kim, O.J. (1981) A mineralogical study of the skarn minerals from the shinyemi lead-zinc ore deposits. Journal of the Geological Society of Korea, 14, 167-182.
  17. Kim, S.Y. (1976) Geology, mineralogy and geochemistry of tungsten deposits of the Sangdong-Ogbang area, Southern Korea. Ph.D. Thesis, Univerity of Leed, England.
  18. Ko, J.D. (1981) Mineralogy and genesis of Fe-Cu and Au-Bi-Cu deposits in the Gedo mine, Gangwaon-do, Korea. M.S. Thesis, Seoul National University.
  19. Marico, T. and Yang, D. (1988) Occurrence and zonal arrangement of minerals in the Shinyemi iron skarn deposit, Korea. Mining Geology, 38, 72.
  20. Meinert, L.D. (1992) Skarns and skarn deposits. Geoscience Canada, 19(4).
  21. Meinert, L.D. (1995) Compositional variation of igneous rocks associated with skarn deposits—chemical evidence for a genetic connection between petrogenesis and mineralization. Magmas, fluids and ore deposits: Canada, Mineralogical Association of Canada, 23, 401-418.
  22. Meinert, L.D., Dipple, G.M., and Nicolescu, S. (2005) World skarn deposits. In Economic Geology 100th Anniversary Volume, 299-336.
  23. Mizuta, T., Shimazaki, H., Kaneda, H., and Lee, M. S. (1984) Compositional variation of sphalerites from some Au-Ag ore deposits in South Korea. Granitic province and associated ore deposits in South Korea Rept. of 2nd Overseas Field Research on the Southern Korean Peninsula, 127-152.
  24. Moon, K.J. (1983) The genesis of the Sangdong tungsten deposit, the Republic of Korea. Ph. D. thesis, Tasmania university, Australia.
  25. Scott, S.D. and Barnes, H.L (1971) Sphalerite geothermometry and geobarometry. Economic Geology, 66(4), 653-669. https://doi.org/10.2113/gsecongeo.66.4.653
  26. So, C.S. (1968) Die Scheelite-Largerstatte, Sangdong. Inaug. Diss., Univ. Munich, West Germany.
  27. Yang, C.M. and Choi, J.B. (2010) Occurrence of the Pb-Zn skarn deposits in Gukjeon mine, Korea. Journal of the mineralogical society of korea, 23(4), 413-428 (in Korean with English abstract).
  28. Yeom, T.S. and Shin, D.B. (2015) Ore minerals and genetic environments of the Seungryung Zn deposit, Muzu, Korea. Economic and Environmental Geology, 48(1), 1-13 (in Korean with English abstract). https://doi.org/10.9719/EEG.2015.48.1.1
  29. Yun, S.K. (1972) Geology and skarn ore mineralization of the Yeonhwa-Ulchin zinc-lead mining district, southeastern Taebaegsan region, Korea. Ph. D. Thesis, Stanford university, California.

Cited by

  1. Occurrence and Mineralogical Properties of Green-Blue Inorganic Pigments in Korea vol.31, pp.1, 2018, https://doi.org/10.9727/jmsk.2018.31.1.33
  2. 괴산 성도 연-아연 광상의 산출광물과 생성환경 vol.50, pp.5, 2015, https://doi.org/10.9719/eeg.2017.50.5.325
  3. 밀양 국전광산의 녹-청색 구리-아연 수화황산염 광물 vol.51, pp.6, 2015, https://doi.org/10.9719/eeg.2018.51.6.473
  4. Mineralogy, Geochemistry, and Age Constraints on the Axinite-Bearing Gukjeon Pb-Zn Skarn Deposit in the Miryang Area, South Korea vol.11, pp.6, 2015, https://doi.org/10.3390/min11060619