• Title/Summary/Keyword: skarn

Search Result 109, Processing Time 0.026 seconds

On the Genesis of Skarn-type Scheelite Deposits at the Dongmyoung mine (동명광산(東明鑛山)의 스카른형(型) 회중석(灰重石) 광상(鑛床)의 성인(成因))

  • Oh, Mihn-Soo;Park, Ki-Hwa
    • Economic and Environmental Geology
    • /
    • v.16 no.1
    • /
    • pp.37-49
    • /
    • 1983
  • The skarn type tungsten deposits are developed in the contact aureole of Jurassic biotite-hornblende granodiorite and limestone beds. The latter can be divided into the Great Limestone Series of Joseon System and Gabsan Formation which is correlative to the Hongjeom Series of Pyeongahn System. The skarns are impregnated in the limestone, sandstone, schist and granodiorite, and showing zonal distribution. The five skarn zones are from fresh limestone inwards to wollastonite-skarn, clinopyroxene-skarn, clinopyroxene-garnet skarn, garnet skarn and vesuvianite skarn zone. The ore mineral, scheelite, disseminates in the clinopyroxene-garnet and vesuvianite skarn zone, and the size of the scheelite crystals in vesuvianite skarn zone is larger than in clinopyroxene- garnet skarn zone. According to the mineral paragenesis and the composition of skarn minerals, oxygen fugacity ($fo_2$) is low. Fluid inclusions in quartz comprise much $LCO_2$ and fluid inclusion studies revealed that the homogenization temperatures range $240-290^{\circ}C$.

  • PDF

New discoveries, skarn zonation, and skarn textures at the Geodo Mine in the Taebaeksan Basin, South Korea

  • Kim, Eui-Jun;Yang, Seok-Jun;Shin, Seungwook;Nam, Hyeong-Tae;Shin, Dongbok;Im, Heon-Kyoung;Oh, Il-Hwan;No, Sang-Gun;Cho, Sung-Jun;Park, Maeng-Eon
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.881-889
    • /
    • 2018
  • The Geodo skarn deposit is located in the Taebaeksan Basin, central eastern Korean Peninsula. The geology of the deposit consists of Cambrian to Ordovician calcareous sedimentary rocks and the Cretaceous Eopyeong granitoids. The skarns at Geodo occur around the Eopyeong granitoids, which consist, from early to late, of magnetite-bearing equigranular quartz monzodiorite, granodiorite, and dykes. These dykes emanated randomly from equigranular granodiorite and some of dykes spatially accompany skarns. Skarn Fe mineralization, referred as Prospect I and II in this study, is newly discovered beyond previously known skarns adjacent to the quartz monzodiorite. These discoveries show a vertical and lateral variation of skarn facies, grading from massive reddish-brown garnet-quartz in a lower and proximal zone to banded in an upper and distal zone, reflecting changes in lithofacies of the host rocks. Skarn veins in distal locations are parallel to sedimentary laminae, suggesting that lithologic control is important although proximal skarn has totally obliterated primary structures, due to intense retrograde alteration. Skarns at Geodo are systematically zoned relative to the causative dykes. Skarn zonation comprises proximal garnet, distal pyroxene, and vesuvianite (only in Prospect I) at the contact between skarn and marble. Retrograde alteration is intensely developed adjacent to the contact with dykes and occurs as modification of the pre-existing assemblages and progressive destruction such as brecciation of the prograde assemblages. The retrograde alteration assemblages consist predominantly of epidote, K-feldspar, amphibole, chlorite, and calcite. Most of the magnetite (the main ore mineral), replaces calc-silicate minerals such as garnet in the lower proximal exoskarn, whereas it occurs massive in distal pyroxene and amphibole in the upper and distal exoskarn. The emanation of dykes from the equigranular granodiorite has provided channelways for ascent of skarn-forming fluids from a deep source, whereas the style and nature of skarns suggest that originally structurally-controlled skarn-forming fluids may migrate long distances laterally to produce skarn in calcareous sedimentary rocks.

Studies on the Skarn-type Ore Deposits and Skarn Minerals in Gyeongnam Province (경남지구(慶南地區)의 스카른형(型) 광상(鑛床)의 성인(成因)과 스카른광물(鑛物)에 관(關)한 연구(硏究))

  • Woo, Young Kyun;Lee, Min Sung;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.15 no.1
    • /
    • pp.1-16
    • /
    • 1982
  • Many skarn type iron ore deposits are distributed in Kimhae-Mulgeum area of Gyeongnam Province. Integrated field, mineralogic, geochemical and fluid inclusion studies were undertaken to illustrate the character and origin of the ores in this area. The iron ore deposits in this area are NS or NNE trending fracture filling magnetite veins which are developed in andesitic rocks near the contact with late Cretaceous micrographic granite bodies. Symmetrically zoned skarns are commonly developed in the magnetite veins of this area. Zoning of skarn from center to margin of the vein are as follows; garnet quartz skarn-epidote skarn-epidote orthoclase skarn-altered andesitic rocks. Major ore mineral is magnetite and small amount of hematite, pyrite, pyrrhotite, chalcopyrite and sphalerite are associated. Vein paragenesis reveals four depositional stages; 1) skarn stage, 2) iron sulfide and oxide stage, 3) skarn stage, 4) sulfide stage Minute halite-bearing polyphase inclusions and liquid inclusions are contained in quartz. Filling temperatures range from $257^{\circ}$ to $370^{\circ}C$.

  • PDF

Skarn-Ore Associations and Phase Equilibria in the Yeonhwa-Keodo Mines, Korea (태백산광화대(太白山鑛化帶) 연화(蓮花)-거도광산(巨道鑛山)에 있어서의 스카른과 광석광물(鑛石鑛物)의 수반관계(隨伴關係) 및 상평형(相平衡))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 1983
  • The Yeonhwa (I, II) and Keodo mines, neighboring in the middle part of the Taebaegsan mineral belt, contain three distinct classes of skarn deposits: the zinc-lead skarn at Yeonhwa (I, II), the iron skarn at Keodo south (Jangsan orebodies), and the copper skarn at Keodo north (78 orebodies). The present study characterizes the three classes of skarn deposits mainly in terms of skarn/ore associations examined from chemical compositional point of view, and applies existing quantitative phase diagrams to some pertinent mineral assemblages in these mines. At Yeonhwa I the Wolam I orebody shows a vertical variation in skarn minerals ranging from clinopyroxene/garnet zone on the lower levels through clinopyroxene (without garnet) zone on the intermediate levels, and finally to rhodochrosite veins on the upper levels and surface. Ore minerals, sphalerite and galena, associate most closely with the intermediate clinopyroxene zone. At Keodo, the Jangsan iron skarn hosted in quartz monzodiolite as a typical endoskarn, shows a skarn zoning, from center of orebody to outer side, magnetite zone, magnetite/garnet zone, garnet clinopyroxene zone, and clinopyroxene/epidote/plagioclase zone. The 78 copper skarn in the Hwajeol limestone indicates a zoning, from quartz porphyry side toward limestone side, orthoclase/epidote zone, epidote/clinopyroxene zone, and clinopyroxene/garnet zone; chalcopyrite and other copper sulfides tend to be in clinopyroxene/garnet zone. Mioroprobe analyses of clinopyroxenes and garnets from the various skarn zones mentioned above revealed that the Yeonhwa zinc/lead skarns are characterized by johansenitic clinopyroxene (Hd 25-78, Jo 15-23) and manganoan andraditic garnet (Ad 13-97, Sp 1-24), whereas the Jangsan iron skarn at Keodo by Mn-poor diopsidic clinopyroxene (Di 78-93, Jo 0.2-1.0) and Mn-poor grossularitic grandite (Gr 65-77, Sp 0.5-1.0). The 78 copper skarn at Keodo is characterized by Mn-poor diopsidic-salite (Di 66-91, Jo 0.2-1.1) and Mn-poor andraditic grandite(Ad 40-74, Sp 0.5-1.1). The compositional charateristics of iron, copper, and zinc-lead skarns in the Yeonhwa-Keodo mines are in good correlations with those of the foreign counterparts. Compiling a $T-XCO_2$ phase diagram for the Jangsan endoskarns, a potential upper limit of temperature of the main stage of skarn formation is estimated to be about $530^{\circ}C$, and a lower limit to be $400^{\circ}C$ or below assuming $XCO_2=0.05$ at P total=1kb. Applying a published log $fS_2$-log $fo_2$ diagram to the Keodo 78 and Yeonhwa exoskarns, it is revealed that copper sulfides and zinc-lead sulfides do not co-exist stably below log $fS_2=-4$ and log $fO_2=-23$ at $T=400^{\circ}C$ and ${\times}CO=1$ atm.

  • PDF

Oxygen Isotope Study of Mulgeum, Yangseong, Maeri and Kimhae Iron Ore Deposits in Gyeongnam Province, Korea

  • Woo, Young-Kyun;Savin, Samuel M.
    • Journal of the Korean earth science society
    • /
    • v.23 no.1
    • /
    • pp.97-104
    • /
    • 2002
  • Mulgeum, Yangseong, Maeri and Kimhae iron ore deposits in Gyeongnam Province are hydrothermal skarn type magnetite ore deposits in propylitized andesitic rock near the contact with Cretaceous Masanite. Symmetrical zoned skarns are commonly developed around the magnetite veins. The skarn zones away from the vein are quartz-garnet skarn, epidote skarn and epidote-orthoclase skarn. Oxygen isotope analyses of coexisting minerals from andesitic rock, Masanite and major skarn zones, and of magnetite, hematite and quartz were conducted to provide the information on the formation temperature, the origin and the evolution of the hydrothermal solution forming the iron ore deposits. Becoming more distant from the ore vein, temperatures of skarn zones represent the decreasing tendency, but most ${\delta}^{18}O$ and ${\delta}^{18}O_{H2O}$ values of skarn minerals represent no variation trend, and also the values are relatively low. Judging from all the isotopic data from the ore deposits, the major source of hydrothermal solution altering the skarn zones and precipitating the ore bodies was magmatic water derived from the deep seated Masanite. This high temperature hydrothermal solution rising through the fissures of propylitized andesitic rock was mixed with some meteoric water, and occurred the extensive isotopic exchange with the propylitized andesitic rock, and formed the skarns. During these processes, the temperature and ${\delta}^{18}O_{H2O}$ value of hydrothermal solution were lowered gradually. At the main stage of iron ore precipitation, because all the alteration was already finished, the new rising hydrothermal solution formed only the magnetite ore without oxygen isotopic exchange with the wall rock.

Skarn Deposits and Related Igneous Rocks: Their Cogeneses at Depths (스카른 광상(鑛床)과 관계화성암(關係火成岩)의 심부동일기원(深部同一起源))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.18 no.2
    • /
    • pp.93-105
    • /
    • 1985
  • Whether a skarn deposit in carbonate host occurs in contact with certain igneous mass or not has been a general criterion in identifying the igneous rock that genetically relates to the skarn deposit. It is well known, however, that there are many skarn deposits which are not close to any given igneous contact but are far away from the contact. In this paper the reason why such deposits can be formed at a distance from the contact as mentioned is expressed based on the concept that skarn deposits and related igneous rocks are genetically connected at depth where ore-forming fluids emanate from magma and are removed upwards; the movement of ore-forming fluids separated from magma at any depth may have a tendency to infiltrate upward in bulk rather than to diffuse laterally; the paths of magma and cogenetic ore-forming fluids may be identical at lower depths but the latter can be diverted from the former with upward movement so that the positions of the skarn deposits which resulted from the ore-forming fludis at upper levels can be distant from the igneous contacts on a given horizontal section. Statistics indicate that the majority of exoskarns are found at distances up to 800 meters or rarely up to 3,000 meters from igneous contacts and endoskarns up to 600 meters or more. Numerous case studies of skarn deposits in various parts of the world support the above reasoning indicating a general downward convergency of skarn orebodies and related igneous masses with depth. A typical example of this situation is well demonstrated at the Keumseong molybdenum deposit, which is apart from the Jecheon granite on the surface but gets closer to the granite body with depth and finally is intertongued with the granite apophyses in its root zone. Another case for skarn deposit not associated with igneous contact either laterally or vertically but with a deep-seated distal igneous mass is the Sangdong scheelite deposit; 700 meters below the scheelite orebody a blind pluton of muscovite granite, which intruded into the Precambrian crystalline schist, has been recently discovered by deep drilling.

  • PDF

Petrogenesis of the Skarn at the Dielette, Cotentin, France (디엘레트지역(地域) 스카른의 암석학적(岩石學的) 성인연구(成因硏究))

  • Chang, Ho Wan
    • Economic and Environmental Geology
    • /
    • v.18 no.2
    • /
    • pp.139-150
    • /
    • 1985
  • Skarn at the Dielette formed largely in calc-silicate hornfels at the contact with the Flamanville granite. The skarn consists mainly of garnet and pyroxene, and less frequently vesuvianite. Traversing toward calc-silicate hornfels wall rock from a central zone of the skarn, the general sequence of formation of mineral assemblages is: (1) dark brown garnet (2) pale brown garnet-vesuvianite-pyroxene, and (3) pyroxene-prehnite-scapolite-wollastonite envelopes (designated as transition zone) developed between skarn and calc-silicate hornfels. The central zone of the skarn consists mainly of dark brown garnets (garnet I) that contain little or no pyroxene. The pale brown garnet (garnet II) is associated with pyroxene and vesuvianite. The sequence of these garnets results from the zonal growth outward. There is an abrupt discontinuity in composition between garnet I formed in early stage and garnet II in late stage, while each garnet shows relatively uniform composition. At the zone in contact with the granite, the iron contents of garnets decrease toward the marginal zone of the skarn, from an average value of 36 mole % andradite in garnet I to 18 mole % andradite in garnet II. At the zone distant from the granite, the andradite component decreases from 28 mole % in garnet 1 to 19 mole % in garnet II. The variation of the iron contents of pyroxenes is also similar to that of garnets. The sharp discontinuity in composition of garnets and pyroxenes suggests that the skarn of study area was formed by infiltration metasomatic process. The results of the analyses of mineral assemblages of the transition zone by chemical potential diagrams suggest that the transition zone was made by the diffusion of the elements Ca, K and Fe from the skarn to the calc-silicate hornfels contact zone. The estimated temperatures and $Xco_2$ for the formation of the transition zone show $300^{\circ}C$$440^{\circ}C$ and $0.07{\pm}0.05<Xco_2<0.02{\pm}0.01$ at 1 Kb respectively.

  • PDF

Mineralogy and Iron Chemistry of Garnets and Clinopyroxenes in the Skarn Deposits, the Hambaek Geosyncline Belt, Korea (함백지향내의 스카른광상에서 산출되는 석류석과 단사휘석의 광물학과 철화학)

  • 최진범;김수진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.119-128
    • /
    • 1991
  • In the southern limb of the Hambaek geosyncline belt, large-scaled skarn deposits are developed in the Cambro-Ordovician sedimentary rocks of the Chosun Supergroup. They are the Sangdong tungsten deposit, Geodo iron-copper deposit, Yeonhwa I and II lead-zinc deposits, and Ulchin zinc-lead deposit, all of which are associated with various skarn minerals. Though different occurrences and paragenesis are found in different deposits, most skarn deposits always have skarns of garnet (andradite-grossular series) and clinopyroxene(heden-bergite-diopside series). Andradite and hedenbergite are Fe-dominant members, but show different oxidation states, that is, Fe3+ for andradite and Fe2+ for hedenbergite. According to iron chemistry and log([Fe/Al]gd/[Fe/Mg]cpx) derived from equilibrium reactions, the diopside-andradite and hedenbergite-grossular pairs suggest the oxidized state (dian type) and reduced state (hegro type), respectively. Among skarn deposits developed in the Hambaek geosynline, it can be classified that the Geodo and Yeonhwa I skarns are of dian type, while the Sangdong, Yeonhwa II, and Ulchin deposits are of hegro type. This classification is not applicable to all kinds of skarn deposits, but may be applicable to such deposits as are more controlled by oxygen fugacity than composition of skarn fluid.

  • PDF

The Skarnification and Fe-Mo Mineralization at Lower Part of Western Shinyemi Ore Body in Taeback Area (태백지역 신예미 서부광체 하부의 스카른화작용 및 철-몰리브덴 광화작용)

  • Seo, Ji-Eun;Kim, Chang-Seong;Park, Jung-Woo;Yoo, In-Kol;Kim, Nam-Hyuck;Choi, Seon-Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.1 s.51
    • /
    • pp.35-46
    • /
    • 2007
  • Shinyemi skarn deposits occur as Fe-Mo skarn type and Pb-Zn-Cu hydrothermal replacement type along the contact between Cretaceous Shinyemi granitoids and Cambro-Ordovician mixed limestone and dolostone sequence of the Choseon Supergroup. In the lower part of Western Shinyemi ore body two stages of skarn formation have been observed: the early, stage I (magnesian) skarn with Fe mineralization and the late, stage II(calcic) skarn with Mo mineralization. The stage I skarn spatially is overprinted by stage II skarn. The stage I skarn is predominantly composed of olivine, magnetite and diopside whereas, the stage II skarn is dominated by hedenbergite and garnet. The skarnification process occurred in two stages, both prograde and retrograde for stage I and stage II skarns. In stage I, the prograde skarns, mainly composed of anhydrous silicate minerals, were formed at relatively higher temperatures (about $400\;to\;550^{\circ}C$) under low $CO_{2}$ fugacity ($X_{CO2}<0.1$) conditions. On the other hand, the retrograde skarns that consisted of hydrous minerals were formed at lower temperatures (about $300\;to\;400^{\circ}C$).

Skarn Evolution and Fe-(Cu) Mineralization at the Pocheon Deposit, Korea (한국 포천 광상의 스카른 진화과정 및 철(-동)광화작용)

  • Go, Ji-Su;Choi, Seon-Gyu;Kim, Chang Seong;Kim, Jong Wook;Seo, Jieun
    • Economic and Environmental Geology
    • /
    • v.47 no.4
    • /
    • pp.335-349
    • /
    • 2014
  • The Pocheon skarn deposit, located at the northwestern part of the Precambrian Gyeonggi massif in South Korea, occurs at the contact between the Cretaceous Myeongseongsan granite and the Precambrian carbonate rocks, and is also controlled by N-S-trending shear zone. The skarn distribution and mineralogy reflects both structural and lithological controls. Three types of skarn formations based on mineral assemblages in the Pocheon skarn exist; a sodiccalcic skarn and a magnesian skarn mainly developed in the dolostone, and a calcic skarn developed in the limestone. Iron mineralization occurs in the sodic-calcic and magnesian skarn zone, locally superimposed by copper mineralization during retrograde skarn stage. The sodic-calcic skarn is composed of acmite, diopside, albite, garnet, magnetite, maghemite, anhydrite, apatite, and sphene. Retrograde alteration consists of tremolite, phlogopite, epidote, sericite, gypum, chlorite, quartz, calcite, and sulfides. Magnesian skarn mainly consists of diopside and forsterite. Pyroxene and olivine are mainly altered to tremolite, with minor phlogopite, talc, and serpentine. The calcic skarn during prograde stage mainly consists of garnet, pyroxene and wollastonite. Retrograde alteration consists of epidote, vesuvianite, amphibole, biotite, magnetite, chlorite, quartz, calcite, and sulfides. Microprobe analyses indicate that the majority of the Pocheon skarn minerals are enriched by Na-Mg composition and have high $Fe^{3+}/Fe^{2+}$, $Mg^{2+}/Fe^{2+}$, and $Al^{3+}/Fe^{2+}$ ratios. Clinopyroxene is acmitic and diopsidic composition, whereas garnet is relatively grossular-rich. Amphiboles are largely of tremolite, pargasite, and magnesian hastingsite composition. The prograde anhydrous skarn assemblages formed at about $400^{\circ}{\sim}500^{\circ}C$ in a highly oxidized environment ($fO_2=10^{-23}{\sim}10^{-26}$) under a condition of about 0.5 kbar pressure and $X(CO_2)=0.10$. With increasing fluid/rock interaction during retrograde skarn, epidote, amphibole, sulfides and calcite formed as temperature decreased to approximately $250^{\circ}{\sim}400^{\circ}C$ at $X(CO_2)=0.10$.