DOI QR코드

DOI QR Code

Ore Geology of Skarn Ore Bodies in the Kasihan Area, East Java, Indonesia

인도네시아 까시한지역 스카른광체의 광상학적 특성

  • Received : 2011.12.01
  • Accepted : 2012.01.31
  • Published : 2012.02.28

Abstract

Copper-zinc-bearing skarns of the Kasihan area developed at limestone layers in the sedimentary facies of the Late Oligocene Arjosari Formation. The skarns consist mainly of fine-grained, massive clinopyroxene-garnet, garnet, garnet-epidote, and epidote skarns. Most copper and zinc(-lead) ore mineralization occur in the clinopyroxene-garnet and garnetepidote skarn, respectively. Clinopyroxene occurs as a continuous solid solution of diopside and hedenbergite (from nearly pure diopside up to ${\approx}34$ mole percent hedenbergite), with a maximum 28.2 mole percent johannsenite component. The early and late pyroxenes of Kasihan skarns are diopsidic and salitic, respectively. They fall in the fields typical Cu- and Zn-dominated skarns, respectively. Garnet displays a relatively wide range of solid solution between grossular and andradite with up to ${\approx}2.0$ weight percent MnO. Garnet in early pyroxene-garnet skarn ranges from 49.1 to 91.5 mole percent grossular (mainly ${\geq}78$ mole % grossular). Garnets in late garnet and garnet-epidote skarns range from 2.8 to 91.4 mole percent grossular (mainly ${\geq}70$ mole % for garnet skarn). Epidote compositions indicate solid solutions of clinozoisite and pistacite varying from 65.8 to 76.2 mole percent clinozoisite. Phase equilibria indicate that skarn evolution was the result of interaction of water-rich fluids ($X_{CO_2}{\leq}0.1$) with original lithologies at ${\approx}0.5$ kb with declining temperature (early clinopyroxene-garnet and garnet skarn, ${\approx}450$ to $370^{\circ}C$; late garnet-epidote and epidote skarn, ${\approx}370$ to $300^{\circ}C$).

인도네시아 까시한 지역 함 동-아연 스카른광체는 올리고신 후기 퇴적암류 중 석회암층을 따라 발달한다. 스카른광체의 괴상스카른대는 초기에서 후기로 단사휘석-석류석대, 석류석대, 석류석-녹염석대, 녹염석대 스카른으로 구분된다. 초기 괴상 스카른대에서 산출하는 단사휘석은 투휘석-헤덴버가이트 고용체로서, 초기 투휘석 단성분에 가까운 조성으로부터 후기 salitic 단사휘석으로의 조성변화가 확인된다. 이러한 단사휘석의 조성변화는 일반적인 스카른 광체에서의 수반 금속성분 (Cu 및 Zn광화작용)과 단사휘석 조성 상관관계와 잘 일치한다. 석류석의 경우 그로슐라-안드라다이트 고용체로서 매우 넓은 조성변화를 보여주며, 후기 석류석의 경우 Fe함량의 증가 경향성이 인지된다. 녹염석의 경우 클리노조이사이트-피스타사이트 고용체(65.8-76.2 mol. % 클리노조이사이트)로 확인된다. 상평형관계로 확인된 까시한 지역 함 동-아연 스카른광체는 약 0.5 kb의 환경에서 초기 약 $450^{\circ}C$ (단사휘석-석류석 및 석류석 스카른, ${\approx}450-370^{\circ}C$) 에서 시작되어 후기 $300^{\circ}C$ (석류석-녹염석 및 녹염석 스카른, ${\approx}370-300^{\circ}C$) 에 걸쳐 진행되었다.

Keywords

References

  1. Bence, A.E. and Albee, A.L. (1968) Empirical correction factors for the electron microanalysis of silicates and oxides. J. Geol., v.76, p.382-403. https://doi.org/10.1086/627339
  2. Choi, S.G., So, C.S., Choi, S.H. and Han, J.K. (1995) Genetic environments of hydrothermal vein deposits in the Pacitan District, East Java, Indonesia. Econ. Environ. Geol., v.28, p.109-121.
  3. Einaudi, M.T. and Burt, D.M. (1982) Introduction: terminology, classification, and composition of skarn deposits. Econ. Geol., v.77, p.745-754. https://doi.org/10.2113/gsecongeo.77.4.745
  4. Einaudi, M.T., Meinert, L.D. and Newberry, R.J. (1981) Skarns deposits. Econ. Geol., 75th Anniversary Volume, p.317-391.
  5. French, B.M. (1971) Stability relations of siderite ($FeCO_3$) in system Fe-C-O. Am. Jour. Sci., v.271, p.37-38. https://doi.org/10.2475/ajs.271.1.37
  6. Gordon, T.M. and Greenwood, H.J. (1971) The stability of grossularite in $H_2O$-$CO_2$ mixtures. Amer. Mineral., v.56, p.1674-1688.
  7. Greenwood, H.J. (1967) Wollastonite: Stability in $H_2O$-$CO_2$ mixtures and occurrence in a contact metamorphic aureole near Salmo, British Columbia, Canada. Am. Mineral., v.52, p.1669-1680.
  8. Gustafson, W.I. (1974) The stability of andradite, hedenbergite, and related minerals in the system Ca-Fe-Si-OH. J. Petrology, v.15, p.455-496. https://doi.org/10.1093/petrology/15.3.455
  9. Huang, C. (1976) An isotopic and petrologic study of the contact metamorphism and metasomatism related to copper deposits at Ely, Nevada: Unpub. Ph. D. Dissert., The Pennsylvania State Univ., 178p.
  10. Kerrick, D.M. (1974) Review of metamorphic mixed-volatile ($H_2O$-$CO_2$) equilibria. Am. Miner., v.59, p.729-762.
  11. Liou, J.G (1974) Stability realtions of anorthite-quartz in the system Ca-Fe-Si-O-H: Am. Minerl., v.59, p.1016-1025.
  12. Malo, M., Moritz, R., Dube, B., Chagnon, A., Roy, F. and Pelchat, C. (2000) Base metal skarns Au occurrences in the Southern Gaspe Appalachians: distal products of a faulted and displaced magmatic-hydrothermal system along the Grand Pabos-Restigouche fault system. Econ. Geol., v.95, p.1297-1318.
  13. Mueller, R.F. (1973) System CaO-MgO-$SiO_2$-C-$H_2$-$O_2$:Some correlations from nature and experiment: Am. Jou. Sci., v.273, p.152-170. https://doi.org/10.2475/ajs.273.2.152
  14. Newton, R.C. (1966) Some calc-silicate equilibrium relations. Amer. J. Sci., v.264, p.204-222. https://doi.org/10.2475/ajs.264.3.204
  15. Robie, R.A., Hemingway, B.S. and Fisher, J., J.R. (1978) Thermodynamic properties of minerals and realted substances at $298.15^{\circ}K$ and 1 bar ($10^5$ pascals) pressure and at higher temperatures: U.S. Geol. Survey Bull., v.1452, 456p.
  16. Slaughter, J., Kerrick, D.M. and Wall, W.J. (1975) Experimental and thermodynamic study of equilibria in the system CaO-MgO-$SiO_2$-O-$CO_2$. Am. Jour. Sci., v.275, p.143-162. https://doi.org/10.2475/ajs.275.2.143
  17. Taylor, B.E. and Liou, J.G. (1978) The low-temperature stability of andradite in C-O-H fluids. Am. Mineral., v.63, p.377-393.
  18. Van Bemmelen, R.S. (1949) The Geology of the Indonesia, v. IA, 1st edition. Govt. Printing Office, The Hague, p.104-136.